skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Integrating storm surge modeling with traffic data analysis to evaluate the effectiveness of hurricane evacuation
Abstract An integrated storm surge modeling and traffic analysis were conducted in this study to assess the effectiveness of hurricane evacuations through a case study of Hurricane Irma. The Category 5 hurricane in 2017 caused a record evacuation with an estimated 6.8 million people relocating statewide in Florida. The Advanced Circulation (ADCIRC) model was applied to simulate storm tides during the hurricane event. Model validations indicated that simulated pressures, winds, and storm surge compared well with observations. Model simulated storm tides and winds were used to estimate the area affected by Hurricane Irma. Results showed that the storm surge and strong wind mainly affected coastal counties in south-west Florida. Only moderate storm tides (maximum about 2.5 m) and maximum wind speed about 115 mph were shown in both model simulations and Federal Emergency Management Agency (FEMA) post-hurricane assessment near the area of hurricane landfall. Storm surges did not rise to the 100-year flood elevation level. The maximum wind was much below the design wind speed of 150–170 mph (Category 5) as defined in Florida Building Code (FBC) for south Florida coastal areas. Compared with the total population of about 2.25 million in the six coastal counties affected by storm surge and Category 1–3 wind, the statewide evacuation of approximately 6.8 million people was found to be an over-evacuation due mainly to the uncertainty of hurricane path, which shifted from south-east to south-west Florida. The uncertainty of hurricane tracks made it difficult to predict the appropriate storm surge inundation zone for evacuation. Traffic data were used to analyze the evacuation traffic patterns. In south-east Florida, evacuation traffic started 4 days before the hurricane’s arrival. However, the hurricane path shifted and eventually landed in south-west Florida, which caused a high level of evacuation traffic in south-west Florida. Over-evacuation caused Evacuation Traffic Index ( ETI ) to increase to 200% above normal conditions in some sections of highways, which reduced the effectiveness of evacuation. Results from this study show that evacuation efficiency can be improved in the future by more accurate hurricane forecasting, better public awareness of real-time storm surge and wind as well as integrated storm surge and evacuation modeling for quick response to the uncertainty of hurricane forecasting.  more » « less
Award ID(s):
1832068
PAR ID:
10348361
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Frontiers of Structural and Civil Engineering
Volume:
15
Issue:
6
ISSN:
2095-2430
Page Range / eLocation ID:
1301 to 1316
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hurricane Irma, in 2017, made an unusual landfall in South Florida and the unpredictability of the hurricane’s path challenged the evacuation process seriously and left many evacuees clueless. It was likely to hit Southeast Florida but suddenly shifted its path to the west coast of the peninsula, where the evacuation process had to change immediately without any time for individual decision-making. As such, this study aimed to develop a methodology to integrate evacuation and storm surge modeling with a case study analysis of Irma hitting Southeast Florida. For this purpose, a coupled storm surge and wave finite element model (ADCIRC+SWAN) was used to determine the inundation zones and roadways with higher inundation risk in Broward, Miami-Dade, and Palm Beach counties in Southeast Florida. This was fed into the evacuation modeling to estimate the regional clearance times and shelter availability in the selected counties. Findings show that it takes approximately three days to safely evacuate the populations in the study area. Modeling such integrated simulations before the hurricane hit the state could provide the information people in hurricane-prone areas need to decide to evacuate or not before the mandatory evacuation order is given. 
    more » « less
  2. Hurricanes cause devastating amounts of damage to structures and infrastructure. It harms especially those coastal residents along its track. Over the last couple of years, evacuation planning for populated coastal regions has been challenging and time-consuming due to the uncertainty of the hurricane’s track. As such, with a focus on Northwest Florida, this research aims to focus on the development of evacuation scenarios for coastal communities that combines hurricane inundation and strong wind forecast and evacuation modeling. The proposed approach integrates storm surge simulation models (ADCIRC and SWAN modeling) and traffic evacuation models (Cube and TIME) by using hurricane forecasting datasets to explore the designation of evacuation zones and the calculation of evacuation clearance times in different counties. This approach was applied to three distinct scenarios with a focus on possible populated coastal cities that Hurricane Michael would have hit in 2018. Selected cities are Pensacola, Destin, and Panama City. This type of approach has the potential to help agencies make more informed decisions on evacuations using the accuracy and timeliness of forecasts and provide safer evacuations in coastal areas by avoiding the traffic jams on evacuation routes. 
    more » « less
  3. null (Ed.)
    The State of Florida is significantly vulnerable to catastrophic hurricanes that cause widespread infrastructural damage and claim lives annually. In 2017, Hurricane Irma, a Category 4 hurricane, took on the entirety of Florida, causing the state’s largest evacuation ever as 7 million residents fled the hurricane. Floridians fleeing the hurricane faced the unique challenge of where to go, since Irma made an unusual landfall from the south, enveloping the entire state, forcing evacuees to drive farther north, and creating traffic jams along Florida’s evacuation routes that were worse than during any other hurricane in Florida's history. This study aimed to assess the spatiotemporal traffic impacts of Irma on Florida’s major highways based on real-time traffic data before, during, and after the hurricane made landfall. First, we conducted a time-series-based analysis to evaluate the temporal evacuation patterns of this large-scale evacuation. Second, we developed a metric, namely the congestion index (CI), to assess the spatiotemporal evacuation patterns on I-95, I-75, I-10, I-4, and turnpike (SR-91) highways with a focus on both evacuation and returning traffic. Third, we employed a geographic information system-based analysis to visually illustrate the CI values of corresponding highway sections with respect to different dates and times. Findings clearly showed that imperfect forecasts and the uncertainty surrounding Irma’s predicted path resulted in high levels of congestion and severe delays on Florida’s major evacuation routes. 
    more » « less
  4. In this study, it is demonstrated that hurricane wind intensity, forward speed, pressure, and track play an important role on the generation and propagation of coastal storm surges. Hurricane Irma, which heavily impacted the entire Florida peninsula in 2017, is used to study the storm surge sensitivity to varying storm characteristics. Results show that the west coast experiences a negative surge due to offshore wind of the approaching storm, but the positive surge returns after the hurricane eye passes over a location and wind became onshore. In the west coast peak, surges are intensified by an increase in onshore wind intensity and forward speed. In the Florida Keys, peak surges are intensified by an increase in wind intensity, a decrease in forward speed and a decrease in pressure. In southeast and east Florida, peak surges are intensified by decrease in pressure, although overall surges are less significant as the water can slide along the coastline. In the recessed coastline of Georgia-Carolinas, maximum surge is elevated by an increase in onshore wind intensity. Shifting the track westward increases peak surges on the west coast, while shifting the track eastward increases peak surge on the east coast. The results demonstrate a new understanding about the sensitivity of surge to varying parametric conditions and the importance of considering changes in the coastline orientation in storm surge predictions. 
    more » « less
  5. Research on hurricane impacts in Florida’s coastal regions has been extensive, yet there remains a gap in comparing the effects and potential damage of different hurricanes within the same geographical area. Additionally, there is a need for reliable discussions on how variations in storm surges during these events influence evacuation accessibility to hurricane shelters. This is especially significant for rural areas with a vast number of aging populations, whose evacuation may require extra attention due to their special needs (i.e., access and functional needs). Therefore, this study aims to address this gap by conducting a comparative assessment of storm surge impacts on the evacuation accessibility of southwest Florida communities (e.g., Lee and Collier Counties) affected by two significant hurricanes: Irma in 2017 and Ian in 2022. Utilizing the floating catchment area method and examining Replica’s OD Matrix data with Geographical Information Systems (GISs)-based technical tools, this research seeks to provide insights into the effectiveness of evacuation plans and identify areas that need enhancements for special needs sheltering. By highlighting the differential impacts of storm surges on evacuation accessibility between these two hurricanes, this assessment contributes to refining disaster risk reduction strategies and has the potential to inform decision-making processes for mitigating the impacts of future coastal hazards. 
    more » « less