skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: White-box Machine learning approaches to identify governing equations for overall dynamics of manufacturing systems: A case study on distillation column
Dynamical equations form the basis of design for manufacturing processes and control systems; however, identifying governing equations using a mechanistic approach is tedious. Recently, Machine learning (ML) has shown promise to identify the governing dynamical equations for physical systems faster. This possibility of rapid identification of governing equations provides an exciting opportunity for advancing dynamical systems modeling. However, applicability of the ML approach in identifying governing mechanisms for the dynamics of complex systems relevant to manufacturing has not been tested. We test and compare the efficacy of two white-box ML approaches (SINDy and SymReg) for predicting dynamics and structure of dynamical equations for overall dynamics in a distillation column. Results demonstrate that a combination of ML approaches should be used to identify a full range of equations. In terms of physical law, few terms were interpretable as related to Fick’s law of diffusion and Henry’s law in SINDy, whereas SymReg identified energy balance as driving dynamics.  more » « less
Award ID(s):
1805741
PAR ID:
10213970
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Machine learning with applications
Volume:
3
Issue:
100014
ISSN:
2666-8270
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The SINDy algorithm has been successfully used to identify the governing equations of dynamical systems from time series data. In this paper, we argue that this makes SINDy a potentially useful tool for causal discovery and that existing tools for causal discovery can be used to dramatically improve the performance of SINDy as tool for robust sparse modeling and system identification. We then demonstrate empirically that augmenting the SINDy algorithm with tools from causal discovery can provides engineers with a tool for learning causally robust governing equations. 
    more » « less
  2. Abstract Identifying the governing equations of a nonlinear dynamical system is key to both understanding the physical features of the system and constructing an accurate model of the dynamics that generalizes well beyond the available data. Achieving this kind of interpretable system identification is even more difficult for partially observed systems. We propose a machine learning framework for discovering the governing equations of a dynamical system using only partial observations, combining an encoder for state reconstruction with a sparse symbolic model. The entire architecture is trained end-to-end by matching the higher-order symbolic time derivatives of the sparse symbolic model with finite difference estimates from the data. Our tests show that this method can successfully reconstruct the full system state and identify the equations of motion governing the underlying dynamics for a variety of ordinary differential equation (ODE) and partial differential equation (PDE) systems. 
    more » « less
  3. Alber, Mark (Ed.)
    Biological systems exhibit complex dynamics that differential equations can often adeptly represent. Ordinary differential equation models are widespread; until recently their construction has required extensive prior knowledge of the system. Machine learning methods offer alternative means of model construction: differential equation models can be learnt from data via model discovery using sparse identification of nonlinear dynamics (SINDy). However, SINDy struggles with realistic levels of biological noise and is limited in its ability to incorporate prior knowledge of the system. We propose a data-driven framework for model discovery and model selection using hybrid dynamical systems: partial models containing missing terms. Neural networks are used to approximate the unknown dynamics of a system, enabling the denoising of the data while simultaneously learning the latent dynamics. Simulations from the fitted neural network are then used to infer models using sparse regression. We show, via model selection, that model discovery using hybrid dynamical systems outperforms alternative approaches. We find it possible to infer models correctly up to high levels of biological noise of different types. We demonstrate the potential to learn models from sparse, noisy data in application to a canonical cell state transition using data derived from single-cell transcriptomics. Overall, this approach provides a practical framework for model discovery in biology in cases where data are noisy and sparse, of particular utility when the underlying biological mechanisms are partially but incompletely known. 
    more » « less
  4. null (Ed.)
    A plethora of complex dynamical systems from disordered media to biological systems exhibit mathematical characteristics (e.g., long-range dependence, self-similar and power law magnitude increments) that are well-fitted by fractional partial differential equations (PDEs). For instance, some biological systems displaying an anomalous diffusion behavior, which is characterized by a non-linear mean-square displacement relation, can be mathematically described by fractional PDEs. In general, the PDEs represent various physical laws or rules governing complex dynamical systems. Since prior knowledge about the mathematical equations describing complex dynamical systems in biology, healthcare, disaster mitigation, transportation, or environmental sciences may not be available, we aim to provide algorithmic strategies to discover the integer or fractional PDEs and their parameters from system's evolution data. Toward deciphering non-trivial mechanisms driving a complex system, we propose a data-driven approach that estimates the parameters of a fractional PDE model. We study the space-time fractional diffusion model that describes a complex stochastic process, where the magnitude and the time increments are stable processes. Starting from limited time-series data recorded while the system is evolving, we develop a fractional-order moments-based approach to determine the parameters of a generalized fractional PDE. We formulate two optimization problems to allow us to estimate the arguments of the fractional PDE. Employing extensive simulation studies, we show that the proposed approach is effective at retrieving the relevant parameters of the space-time fractional PDE. The presented mathematical approach can be further enhanced and generalized to include additional operators that may help to identify the dominant rule governing the measurements or to determine the degree to which multiple physical laws contribute to the observed dynamics. 
    more » « less
  5. Identifying governing equations for a dynamical system is a topic of critical interest across an array of disciplines, from mathematics to engineering to biology. Machine learning—specifically deep learning—techniques have shown their capabilities in approximating dynamics from data, but a shortcoming of traditional deep learning is that there is little insight into the underlying mapping beyond its numerical output for a given input. This limits their utility in analysis beyond simple prediction. Simultaneously, a number of strategies exist which identify models based on a fixed dictionary of basis functions, but most either require some intuition or insight about the system, or are susceptible to overfitting or a lack of parsimony. Here, we present a novel approach that combines the flexibility and accuracy of deep learning approaches with the utility of symbolic solutions: a deep neural network that generates a symbolic expression for the governing equations. We first describe the architecture for our model and then show the accuracy of our algorithm across a range of classical dynamical systems. 
    more » « less