skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Local interactions underlying collective motion in human crowds
It is commonly believed that global patterns of motion in flocks, schools and crowds emerge from local interactions between individuals, through a process of self-organization. The key to explaining such collective behaviour thus lies in deciphering these local interactions. We take an experiment-driven approach to modelling collective motion in human crowds. Previously, we observed that a pedestrian aligns their velocity vector (speed and heading direction) with that of a neighbour. Here we investigate the neighbourhood of interaction in a crowd: which neighbours influence a pedestrian's behaviour, how this depends on neighbour position, and how the influences of multiple neighbours are combined. In three experiments, a participant walked in a virtual crowd whose speed and heading were manipulated. We find that neighbour influence is linearly combined and decreases with distance, but not with lateral position (eccentricity). We model the neighbourhood as (i) a circularly symmetric region with (ii) a weighted average of neighbours, (iii) a uni-directional influence, and (iv) weights that decay exponentially to zero by 5 m. The model reproduces the experimental data and predicts individual trajectories in observational data on a human ‘swarm’. The results yield the first bottom-up model of collective crowd motion.  more » « less
Award ID(s):
1431406
PAR ID:
10214056
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the Royal Society B: Biological Sciences
Volume:
285
Issue:
1878
ISSN:
0962-8452
Page Range / eLocation ID:
20180611
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Patterns of collective motion in bird flocks, fish schools and human crowds are believed to emerge from local interactions between individuals. Most ‘flocking' models attribute these local interactions to hypothetical rules or metaphorical forces and assume an omniscient third-person view of the positions and velocities of all individuals in space. We develop a visual model of collective motion in human crowds based on the visual coupling that governs pedestrian interactions from a first-person embedded viewpoint. Specifically, humans control their walking speed and direction by cancelling the average angular velocity and optical expansion/contraction of their neighbours, weighted by visibility (1 − occlusion). We test the model by simulating data from experiments with virtual crowds and real human ‘swarms'. The visual model outperforms our previous omniscient model and explains basic properties of interaction: ‘repulsion' forces reduce to cancelling optical expansion, ‘attraction' forces to cancelling optical contraction and ‘alignment' to cancelling the combination of expansion/contraction and angular velocity. Moreover, the neighbourhood of interaction follows from Euclid's Law of perspective and the geometry of occlusion. We conclude that the local interactions underlying human flocking are a natural consequence of the laws of optics. Similar perceptual principles may apply to collective motion in other species. 
    more » « less
  2. Collective motion in human crowds has been understood as a self-organizing phenomenon that is generated from local visual interactions between neighboring pedestrians. To analyze these interactions, we introduce an approach that estimates local influences in observational data on moving human crowds and represents them as spatially-embedded dynamic networks (visual influence networks). We analyzed data from a human “swarm” experiment (N= 10, 16, 20) in which participants were instructed to walk about the tracking area while staying together as a group. We reconstructed the network every 0.5 seconds using Time-Dependent Delayed Correlation (TDDC). Using novel network measures of local and global leadership ('direct influence' and 'branching influence'), we find that both measures strongly depend on an individual’s spatial position within the group, yielding similar but distinctive leadership gradients from the front to the back. There was also a strong linear relationship between individual influence and front-back position in the crowd. The results reveal that influence is concentrated in specific positions in a crowd, a fact that could be exploited by individuals seeking to lead collective crowd motion. 
    more » « less
  3. null (Ed.)
    Collective motion in human crowds emerges from local interactions between individual pedestrians. Previously, we found that an individual in a crowd aligns their velocity vector with a weighted average of their neighbors’ velocities, where the weight decays with distance (Rio, Dachner, & Warren, PRSB, 2018; Warren, CDPS, 2018). Here, we explain this “alignment rule” based solely on visual information. When following behind a neighbor, the follower controls speed by canceling the neighbor’s optical expansion (Bai & Warren, VSS, 2018) and heading by canceling the neighbor’s angular velocity. When walking beside a neighbor, these relations reverse: Speed is controlled by canceling angular velocity and heading by canceling optical expansion. These two variables trade off as sinusoidal functions of eccentricity (Dachner & Warren, VSS, 2018). We use this visual model to simulate the trajectories of participants walking in virtual (12 neighbors) and real (20 neighbors) crowds. The model accounts for the data with root mean square errors (.04–.05 m/s, 1.5°–2.0°) the distance decay as a consequence of comparable to those of our previous velocity-alignment model. Moreover, the model explains Euclid’s law of perspective, without an explicit distance term. The visual model thus provides a better explanation of collective motion. 
    more » « less
  4. Agent-based models of “flocking” and “schooling” have shown that a weighted average of neighbor velocities, with weights that decay gradually with distance, yields emergent collective motion. Weighted averaging thus offers a potential mechanism of self-organization that recruits an increasing, but self-limiting, number of individuals into collective motion. Previously, we identified and modeled such a ‘soft metric’ neighborhood of interaction in human crowds that decays exponentially to zero at a distance of 4–5 m. Here we investigate the limits of weighted averaging in humans and find that it is surprisingly robust: pedestrians align with the mean heading direction in their neighborhood, despite high levels of noise and diverging motions in the crowd, as predicted by the model. In three Virtual Reality experiments, participants were immersed in a crowd of virtual humans in a mobile head-mounted display and were instructed to walk with the crowd. By perturbing the heading (walking direction) of virtual neighbors and measuring the participant’s trajectory, we probed the limits of weighted averaging. 1) In the “Noisy Neighbors” experiment, the neighbor headings were randomized (range 0–90°) about the crowd’s mean direction (±10° or ±20°, left or right); 2) in the “Splitting Crowd” experiment, the crowd split into two groups (heading difference = 10–40°) and the proportion of the crowd in one group was varied (50–84%); 3) in the “Coherent Subgroup” experiment, a perturbed subgroup varied in its coherence (heading SD = 0–20°) about a mean direction (±10° or ±20°) within a noisy crowd (heading range = 180°), and the proportion of the crowd in the subgroup was varied. In each scenario, the results were predicted by the weighted averaging model, and attraction strength (turning rate) increased with the participant’s deviation from the mean heading direction, not with group coherence. However, the results indicate that humans ignore highly discrepant headings (45–90°). These findings reveal that weighted averaging in humans is highly robust and generates a common heading direction that acts as a positive feedback to recruit more individuals into collective motion, in a self-reinforcing cascade. Therefore, this “soft” metric neighborhood serves as a mechanism of self-organization in human crowds. 
    more » « less
  5. Nicolas, A; Bain, N; Douin, A; Ramos, O; Furno, A (Ed.)
    Previous research has suggested that some positions in human crowds are more influential than others. The present study aims to manipulate the influence networks in real human crowds by specifying the causal relationship among some pedestrians. We strategically placed covert or explicit leaders (confederates) in a group of walking pedestrians, instructed them to change walking direction (heading) on a signal, and tested their influence on collective motion. We reconstructed visual influence networks from video data and analyzed the effect of these leaders on the movements of other pedestrians. Our results suggest that both covert and explicit leaders in influential positions can steer and split a crowd, but explicit leaders change the network topology and are significantly more influential than their covert counterparts. The results have potential applications to directing emergency evacuations. 
    more » « less