skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The influence of spaceflight and simulated microgravity on bacterial motility and chemotaxis
Abstract As interest in space exploration rises, there is a growing need to quantify the impact of microgravity on the growth, survival, and adaptation of microorganisms, including those responsible for astronaut illness. Motility is a key microbial behavior that plays important roles in nutrient assimilation, tissue localization and invasion, pathogenicity, biofilm formation, and ultimately survival. Very few studies have specifically looked at the effects of microgravity on the phenotypes of microbial motility. However, genomic and transcriptomic studies give a broad general picture of overall gene expression that can be used to predict motility phenotypes based upon selected genes, such as those responsible for flagellar synthesis and function and/or taxis. In this review, we focus on specific strains of Gram-negative bacteria that have been the most studied in this context. We begin with a discussion of Earth-based microgravity simulation systems and how they may affect the genes and phenotypes of interest. We then summarize results from both Earth- and space-based systems showing effects of microgravity on motility-related genes and phenotypes.  more » « less
Award ID(s):
1828793
PAR ID:
10214547
Author(s) / Creator(s):
; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
npj Microgravity
Volume:
7
Issue:
1
ISSN:
2373-8065
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Efficient generation of cardiomyocytes from human-induced pluripotent stem cells (hiPSCs) is important for their application in basic and translational studies. Space microgravity can significantly change cell activities and function. Previously, we reported upregulation of genes associated with cardiac proliferation in cardiac progenitors derived from hiPSCs that were exposed to space microgravity for 3 days. Here we investigated the effect of long-term exposure of hiPSC-cardiac progenitors to space microgravity on global gene expression. Cryopreserved 3D hiPSC-cardiac progenitors were sent to the International Space Station (ISS) and cultured for 3 weeks under ISS microgravity and ISS 1 G conditions. RNA-sequencing analyses revealed upregulation of genes associated with cardiac differentiation, proliferation, and cardiac structure/function and downregulation of genes associated with extracellular matrix regulation in the ISS microgravity cultures compared with the ISS 1 G cultures. Gene ontology analysis and Kyoto Encyclopedia of Genes and Genomes mapping identified the upregulation of biological processes, molecular function, cellular components, and pathways associated with cell cycle, cardiac differentiation, and cardiac function. Taking together, these results suggest that space microgravity has a beneficial effect on the differentiation and growth of cardiac progenitors. 
    more » « less
  2. Abstract Investigating the evolution ofEscherichia coliin microgravity offers valuable insights into microbial adaptation to extreme environments. Here the effects of simulated microgravity (SµG) on gene expression and genome evolution ofE. coliREL606, a strain evolved terrestrially for 35 years, is explored. The transcriptomic changes for glucose-limited and glucose-replete conditions over 24 h illustrate that SµG increased the expression of genes involved in stress response, biofilm, and metabolism. A greater number of differentially expressed genes related to the general stress response (GSR) and biofilm formation is observed in simulated microgravity cultures under glucose-limited conditions in comparison to glucose-replete conditions. Longer term SµG culture under glucose-limited conditions led to the accumulation of unique mutations when compared to control cultures, particularly in themraZ/fruRintergenic region and theelyC gene, suggesting changes in peptidoglycan and enterobacterial common antigen (ECA) production. These findings highlight the physiological and genomic adaptations ofE. colito microgravity, offering a foundation for future research into the long-term effects of space conditions on bacterial evolution. 
    more » « less
  3. Plants have been recognized as key components of bioregenerative life support systems for space exploration, and many experiments have been carried out to evaluate their adaptability to spaceflight. Unfortunately, few of these experiments have involved monocot plants, which constitute most of the crops used on Earth as sources of food, feed, and fiber. To better understand the ability of monocot plants to adapt to spaceflight, we germinated and grew Brachypodium distachyon seedlings of the Bd21, Bd21-3, and Gaz8 accessions in a customized growth unit on the International Space Station, along with 1-g ground controls. At the end of a 4-day growth period, seedling organ’s growth and morphologies were quantified, and root and shoot transcriptomic profiles were investigated using RNA-seq. The roots of all three accessions grew more slowly and displayed longer root hairs under microgravity conditions relative to ground control. On the other hand, the shoots of Bd21-3 and Gaz-8 grew at similar rates between conditions, whereas those of Bd21 grew more slowly under microgravity. The three Brachypodium accessions displayed dramatically different transcriptomic responses to microgravity relative to ground controls, with the largest numbers of differentially expressed genes (DEGs) found in Gaz8 (4527), followed by Bd21 (1353) and Bd21-3 (570). Only 47 and six DEGs were shared between accessions for shoots and roots, respectively, including DEGs encoding wall-associated proteins and photosynthesis-related DEGs. Furthermore, DEGs associated with the “Oxidative Stress Response” GO group were up-regulated in the shoots and down-regulated in the roots of Bd21 and Gaz8, indicating that Brachypodium roots and shoots deploy distinct biological strategies to adapt to the microgravity environment. A comparative analysis of the Brachypodium oxidative-stress response DEGs with the Arabidopsis ROS wheel suggests a connection between retrograde signaling, light response, and decreased expression of photosynthesis-related genes in microgravity-exposed shoots. In Gaz8, DEGs were also found to preferentially associate with the “Plant Hormonal Signaling” and “MAP Kinase Signaling” KEGG pathways. Overall, these data indicate that Brachypodium distachyon seedlings exposed to the microgravity environment of ISS display accession- and organ-specific responses that involve oxidative stress response, wall remodeling, photosynthesis inhibition, expression regulation, ribosome biogenesis, and post-translational modifications. The general characteristics of these responses are similar to those displayed by microgravity-exposed Arabidopsis thaliana seedlings. However, organ- and accession-specific components of the response dramatically differ both within and between species. These results suggest a need to directly evaluate candidate-crop responses to microgravity to better understand their specific adaptability to this novel environment and develop cultivation strategies allowing them to strive during spaceflight. 
    more » « less
  4. The term “microgravity” is used to describe the “weightlessness” or “zero-g” circumstances that can only be found in space beyond earth’s atmosphere. Rhodobacter sphaeroides is a gram-negative purple phototroph, used as a model organism for this study due to its genomic complexity and metabolic versatility. Its genome has been completely sequenced, and profiles of the differential gene expression under aerobic, semi-aerobic, and photosynthetic conditions were examined. In this study, we hypothesized that R. sphaeroides will show altered growth characteristics, morphological properties, and gene expression patterns when grown under simulated microgravity. To test that, we measured the optical density and colony-forming units of cell cultures grown under both microgravity and normal gravity conditions. Differences in the cell morphology were observed using scanning electron microscopy (SEM) images by measuring the length and the surface area of the cells under both conditions. Furthermore, we also identified homologous genes of R. spheroides using the differential gene expression study of Acidovorax under microgravity in our laboratory. Growth kinetics results showed that R. sphaeroides cells grown under microgravity experience a shorter log phase and early stationary phase compared to the cells growing under normal gravity conditions. The length and surface area of the cells under microgravity were significantly higher confirming that bacterial cells experience altered morphological features when grown under microgravity conditions. Differentially expressed homologous gene analysis indicated that genes coding for several COG and GO functions, such as metabolism, signal-transduction, transcription, translation, chemotaxis, and cell motility are differentially expressed to adapt and survive microgravity. 
    more » « less
  5. Retinal pathologies have been heavily studied in response to radiation and microgravity, including spaceflight-associated neuro-ocular syndrome (SANS), which is commonly developed in space flight. SANS has been characterized in clinical studies of astronauts returning to Earth and includes a range of symptoms, such as globe flattening, optic-disc edema, retinal folds, and retinal ischemia. In cases of retinal insult, Müller glia (MG) cells respond via neuroprotective gliotic responses that may become destructive to produce glial scarring and vison loss over time. Retinal pathology is further impacted by the production of excessive reactive oxygen species (ROS) that stimulate retinal inflammation and furthers the gliosis of MG. Neuroprotectants derived from natural products (NPs) able to scavenge excess ROS and mitigate long-term, gliotic responses have garnered recent interest, especially among mature and aging adults. The natural antioxidants aloin and ginkgolide A flavonoids, derived from Aloe vera and Ginkgo biloba species, respectively, have been of particular interest due to their recent use in other nervous-system studies. The current study examined MG behaviors in response to different doses of aloin and ginkgolide A over time by measuring changes in morphology, survival, and ROS production within microscale assays. The study was further enhanced by using galactic cosmic rays (GCR) at the Brookhaven NASA Space Radiation Laboratory to simulate ionizing radiation in low- and high-radiation parameters. Changes in the survival and ROS production of radiation-treated MG were then measured in response to varying dosage of NPs. Our study used in vitro systems to evaluate the potential of NPs to reduce oxidative stress in the retina, highlighting the underexplored interplay between NP antioxidants and MG endogenous responses both in space and terrestrially. 
    more » « less