Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract As interest in space exploration rises, there is a growing need to quantify the impact of microgravity on the growth, survival, and adaptation of microorganisms, including those responsible for astronaut illness. Motility is a key microbial behavior that plays important roles in nutrient assimilation, tissue localization and invasion, pathogenicity, biofilm formation, and ultimately survival. Very few studies have specifically looked at the effects of microgravity on the phenotypes of microbial motility. However, genomic and transcriptomic studies give a broad general picture of overall gene expression that can be used to predict motility phenotypes based upon selected genes, such as those responsible for flagellar synthesis and function and/or taxis. In this review, we focus on specific strains of Gram-negative bacteria that have been the most studied in this context. We begin with a discussion of Earth-based microgravity simulation systems and how they may affect the genes and phenotypes of interest. We then summarize results from both Earth- and space-based systems showing effects of microgravity on motility-related genes and phenotypes.more » « less
-
Abstract Light-field fluorescence microscopy uniquely provides fast, synchronous volumetric imaging by capturing an extended volume in one snapshot, but often suffers from low contrast due to the background signal generated by its wide-field illumination strategy. We implemented light-field-based selective volume illumination microscopy (SVIM), where illumination is confined to only the volume of interest, removing the background generated from the extraneous sample volume, and dramatically enhancing the image contrast. We demonstrate the capabilities of SVIM by capturing cellular-resolution 3D movies of flowing bacteria in seawater as they colonize their squid symbiotic partner, as well as of the beating heart and brain-wide neural activity in larval zebrafish. These applications demonstrate the breadth of imaging applications that we envision SVIM will enable, in capturing tissue-scale 3D dynamic biological systems at single-cell resolution, fast volumetric rates, and high contrast to reveal the underlying biology.more » « less
-
Off-axis digital holographic microscopy (DHM) provides both amplitude and phase images, and so it may be used for label-free 3D tracking of micro- and nano-sized particles of different compositions, including biological cells, strongly absorbing particles, and strongly scattering particles. Contrast is provided by differences in either the real or imaginary parts of the refractive index (phase contrast and absorption) and/or by scattering. While numerous studies have focused on phase contrast and improving resolution in DHM, particularly axial resolution, absent have been studies quantifying the limits of detection for unresolved particles. This limit has important implications for microbial detection, including in life-detection missions for space flight. Here we examine the limits of detection of nanosized particles as a function of particle optical properties, microscope optics (including camera well depth and substrate), and data processing techniques and find that DHM provides contrast in both amplitude and phase for unresolved spheres, in rough agreement with Mie theory scattering cross-sections. Amplitude reconstructions are more useful than phase for low-index spheres and should not be neglected in DHM analysis.more » « less
-
We describe a system for high-temperature investigations of bacterial motility using a digital holographic microscope completely submerged in heated water. Temperatures above 90°C could be achieved, with a constant 5°C offset between the sample temperature and the surrounding water bath. Using this system, we observed active motility in Bacillus subtilis up to 66°C. As temperatures rose, most cells became immobilized on the surface, but a fraction of cells remained highly motile at distances of >100 μm above the surface. Suspended non-motile cells showed Brownian motion that scaled consistently with temperature and viscosity. A novel open-source automated tracking package was used to obtain 2D tracks of motile cells and quantify motility parameters, showing that swimming speed increased with temperature until ∼40°C, then plateaued. These findings are consistent with the observed heterogeneity of B. subtilis populations, and represent the highest reported temperature for swimming in this species. This technique is a simple, low-cost method for quantifying motility at high temperatures and could be useful for investigation of many different cell types, including thermophilic archaea.more » « less
-
null (Ed.)Digital holographic microscopy provides the ability to observe throughout a volume that is large compared to its resolution without the need to actively refocus to capture the entire volume. This enables simultaneous observations of large numbers of small objects within such a volume. We have constructed a microscope that can observe a volume of 0.4 µm × 0.4 µm × 1.0 µm with submicrometer resolution (in xy) and 2 µm resolution (in z) for observation of microorganisms and minerals in liquid environments on Earth and on potential planetary missions. Because environmental samples are likely to contain mixtures of inorganics and microorganisms of comparable sizes near the resolution limit of the instrument, discrimination between living and non-living objects may be difficult. The active motion of motile organisms can be used to readily distinguish them from non-motile objects (live or inorganic), but additional methods are required to distinguish non-motile organisms and inorganic objects that are of comparable size but different composition and structure. We demonstrate the use of passive motion to make this discrimination by evaluating diffusion and buoyancy characteristics of cells, styrene beads, alumina particles, and gas-filled vesicles of micron scale in the field of view.more » « less
-
The performance of light-field microscopy is improved by selectively illuminating the relevant subvolume of the specimen with a second objective lens. Here we advance this approach to a single-objective geometry, using an oblique one-photon illumination path or two-photon illumination to accomplish selective-volume excitation. The elimination of the second orthogonally oriented objective to selectively excite the volume of interest simplifies specimen mounting; yet, this single-objective approach still reduces the out-of-volume background, resulting in improvements in image contrast, effective resolution, and volume reconstruction quality. We validate our new, to the best of our knowledge, approach through imaging live developing zebrafish, demonstrating the technology’s ability to capture imaging data from large volumes synchronously with high contrast while remaining compatible with standard microscope sample mounting.more » « less
-
Described over 100 years ago, the Gouy phase anomaly refers to the additional phase shift that is accumulated as a wave passes through focus. It is potentially useful in analyzing any type of phase-sensitive imaging; in light microscopy, digital holographic microscopy (DHM) provides phase information in the encoded hologram. One limitation of DHM is the weak contrast generated by many biological cells, especially unpigmented bacteria. We demonstrate here that the Gouy phase anomaly may be detected directly in the phase image using the z-derivative of the phase, allowing for precise localization of unlabeled, micrometer-sized bacteria. The use of dyes that increase phase contrast does not improve detectability. This approach is less computationally intensive than other procedures such as deconvolution and is relatively insensitive to reconstruction parameters. The software is implemented in an open-source FIJI plug-in.more » « less
An official website of the United States government
