skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Image capture and pre-filtering for 3D photogrammetry of coral colonies
This is a protocol for generating images to be used in 3D model building via Agisoft Metashape for coral photogrametry. This will cover underwater, field-based methods and tips to collect photographs and preprocessing of photos to improve model building. Image capture is the most important part of 3D photogrammetry because the photos taken at this point will be all that you'll have to build models and collect data. As such, you want to ensure you have enough photos to work with in the future so, in general, more is better. That being said, too many blurry or out of focus pictures will hamper model building. You can optimize your time in the field by taking enough photos from the appropriate angles, however efficiency will come with practice. This is the protocol developed and used by the Kenkel lab to phenotype Acropora cervicornis colonies as part of field operations in the Florida Keys. We incorporate Agisoft Metashape markers in this workflow to scale models and improved model building. The scaling objects used by the Kenkel lab are custom-made, adjustable PVC arrays that include unique markers and bleaching color cards, affectionately called the "Tomahawk". Specs for building a Tomahawk are included in this protocol. Filtering and pre-processing of photos is not always necessary but can be used to salvage 3D models that would be otherwise blurry or incomplete. Here, we describe photo editing in Adobe Lightroom to adjust several characteristics of hundreds of images simultaneously. For a walkthrough and scripts to run Agisoft Metashape on the command line, see https://github.com/wyattmillion/Coral3DPhotogram. For directions to phenotype coral from 3D models see our Phenotyping in MeshLab protocol. These protocols, while created for branching coral, can be applied to 3D models of any coral morphology or any object really. Our goal is to make easy-to-use protocols using accessible softwares in the hopes of creating a standardized method for 3D photogrammetry in coral biology. DOI dx.doi.org/10.17504/protocols.io.bgdcjs2w  more » « less
Award ID(s):
1838667
PAR ID:
10214896
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Protocolsio
ISSN:
2473-1838
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This protocol describes the process of phenotyping branching coral using the 3D model editing software, MeshLab. MeshLab is a free, straightforward software to analyze 3D models of corals that is especially useful in its ability to import color from Agisoft Metashape models. This protocol outlines the steps used by the Kenkel lab to noninvasively phenotype Acropora cervicornis colonies for total linear extension (TLE), surface area, volume, and volume of interstitial space. We incorporate Agisoft Metashape markers with our Tomahawk scaling system (see Image Capture Protocol) in our workflow which is useful for scaling and to improve model building. Other scaling objects can be used, however these markers provide a consistent scale that do not obstruct the coral during image capture. MeshLab measurements of TLE have been groundtruthed to field measures of TLE. 3D surface area and volume have not yet been compared to traditional methods of wax dipping, for surface area, and water displacement, for volume. However, in tests with shapes of known dimensions, i.e. cubes, MeshLab produced accurate measures of 3D surface area and volume when compared to calculated surface area and volume. For directions to photograph coral for 3D photogrammetry see our Image Capture Protocol. For a walkthrough and scripts to run Agisoft Metashape on the command line, see https://github.com/wyattmillion/Coral3DPhotogram. These protocols, while created for branching coral, can be applied to 3D models of any coral morphology or any object really. Our goal is to make easy-to-use protocols using accessible softwares in the hopes of creating a standardized method for 3D photogrammetry in coral biology. Go to http://www.meshlab.net/#download to download the appropriate software for your operating system. P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, G. Ranzuglia MeshLab: an Open-Source Mesh Processing Tool Sixth Eurographics Italian Chapter Conference, page 129-136, 2008 DOI dx.doi.org/10.17504/protocols.io.bgbpjsmn 
    more » « less
  2. Abstract PremiseWe recognized the need for a customized imaging protocol for plant specimens at the time of collection for the purpose of three‐dimensional (3D) modeling, as well as the lack of a broadly applicable photogrammetry protocol that encompasses the heterogeneity of plant specimen geometries and the challenges introduced by processes such as wilting. Methods and ResultsWe developed an equipment list and set of detailed protocols describing how to capture images of plant specimens in the field prior to their deformation (e.g., with pressing) and how to produce a 3D model from the image sets in Agisoft Metashape Professional. ConclusionsThe equipment list and protocols represent a foundation on which additional improvements can be made for specimen geometries outside of the range of the six types considered, and an easy entry into photogrammetry for those who have not previously used it. 
    more » « less
  3. Photogrammetric data collection and analysis techniques are increasingly being used for geotechnical characterization of rock masses, and rock slopes, in particular. There is a growing selection of software packages that can create georeferenced digital 3D models from a photoset and control points. Although each software package is able to create the desired point clouds, different techniques are used to produce them. For a geotechnical investigation, it is important to understand the accuracy of the software being used in order to have confidence in the reliability of the digital 3D models that are created. In a study similar to one conducted in conjunction with the GoldenRocks ARMA conference in 2006 (and described in Tonon and Kottenstette, 2006), a rock outcrop was selected to be the location for a digital photogrammetry model comparison. Two sets of control points were surveyed on the rock outcrop; one set was provided for the creation of each model, and one set was used to evaluate the accuracy of the model by measuring the difference in the location of the point in the model and in the survey data. An unmanned aerial vehicle (UAV) was used to collect video footage of the site. A set of still frames were extracted from the video that contain overlapping images of the rock outcrop. The set of image files was used to create models with the following photogrammetry software packages: Bentley ContextCapture, Agisoft PhotoScan, and Pix4Dmapper. The accuracy of each of the software packages was compared by quantifying the error in the control points and check points between the model and the field survey. As this comparison is intended to provide guidance for selecting software tools to aid in rock mass characterization, other features were evaluated as well, including user-friendliness. Understanding the accuracy of digital photogrammetry software is critical for justifying the use of such models in a geotechnical investigation. The advantages of these models are numerous but of little value if the data provided by the models do not adequately represent the field conditions. Bentley ContextCapture was found to have the least error in the control points and Pix4Dmapper was found to have the least error in the check points. The Bentley ContextCapture model also had the highest resolution, closely followed by the Pix4Dmapper model. Based on these qualities and several others including the general usability, Bentley ContextCapture creates the most effective models for potential geotechnical investigations. 
    more » « less
  4. Cinder cones are a common feature at many volcanic eruptions. Their shapes and volumes can reveal information about eruption conditions, and their geomorphological evolution shapes them and their surrounding environment. It is thus important to quantify the rate and patterns of erosion of young cinder cones. In this study, we examine the Ahmanilix cone, which formed during the 2008 eruption of Okmok volcano in the Aleutian islands region of Alaska. Ahmanilix, located on the eastern side of Okmok’s large caldera, is >250 meters tall and characterized by dramatic gullies formed by the harsh wind, snow and rain conditions typical of the Aleutians. We usd photogrammetry to create 3D models of Ahmanilix using aerial photographic surveys taken from a helicopter in 2021, 2022, 2023 and 2024. We utilize Agisoft Metashape to build point clouds, Cloud Compare to align the point clouds and build raster Digital Elevation Models (DEMs), and QGIS and Python to visualize and analyze these products. By subtracting DEM rasters we quantify year-to-year erosion. We compare our results with erosion rates estimated from satellite observations (Dai et al., 2020), identify regions dominated by erosion or deposition and correlate them with slopes and cinder lithology. Our observations can be extended to other cinder cones and help predict their geomorphological evolution. 
    more » « less
  5. null (Ed.)
    Competition for limited space is an important driver of benthic community structure on coral reefs. Studies of coral-algae and coral-sponge interactions often show competitive dominance of algae and sponges over corals, but little is known about the outcomes when these groups compete in a multispecies context. Multispecies competition is increasingly common on Caribbean coral reefs as environmental degradation drives loss of reef-building corals and proliferation of alternative organisms such as algae and sponges. New methods are needed to understand multispecies competition, whose outcomes can differ widely from pairwise competition and range from coexistence to exclusion. In this study, we used 3D photogrammetry and image analyses to compare pairwise and multispecies competition on reefs in the US Virgin Islands. Sponges ( Desmapsamma anchorata, Aplysina cauliformis ) and macroalgae ( Lobophora variegata ) were attached to coral ( Porites astreoides ) and arranged to simulate multispecies (coral-sponge-algae) and pairwise (coral-sponge, coral-algae) competition. Photogrammetric 3D models were produced to measure surface area change of coral and sponges, and photographs were analyzed to measure sponge-coral, algae-coral, and algae-sponge overgrowth. Coral lost more surface area and was overgrown more rapidly by the sponge D. anchorata in multispecies treatments, when the sponge was also in contact with algae. Algae contact may confer a competitive advantage to the sponge D. anchorata, but not to A. cauliformis , underscoring the species-specificity of these interactions. This first application of photogrammetry to study competition showed meaningful losses of living coral that, combined with significant overgrowths by competitors detected from image analyses, exposed a novel outcome of multispecies competition. 
    more » « less