skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Accelerated Reaction Rates within Self-Assembled Polymer Nanoreactors with Tunable Hydrophobic Microenvironments
Performing reactions in the presence of self-assembled hierarchical structures of amphiphilic macromolecules can accelerate reactions while using water as the bulk solvent due to the hydrophobic effect. We leveraged non-covalent interactions to self-assemble filled-polymer micelle nanoreactors (NR) incorporating gold nanoparticle catalysts into various amphiphilic polymer nanostructures with comparable hydrodynamic nanoreactor size and gold concentration in the nanoreactor dispersion. We systematically studied the effect of the hydrophobic co-precipitant on self-assembly and catalytic performance. We observed that co-precipitants that interact with gold are beneficial for improving incorporation efficiency of the gold nanoparticles into the nanocomposite nanoreactor during self-assembly but decrease catalytic performance. Hierarchical assemblies with co-precipitants that leverage noncovalent interactions could enhance catalytic performance. For the co-precipitants that do not interact strongly with gold, the catalytic performance was strongly affected by the hydrophobic microenvironment of the co-precipitant. Specifically, the apparent reaction rate per surface area using castor oil (CO) was over 8-fold greater than polystyrene (750 g/mol, PS 750); the turnover frequency was higher than previously reported self-assembled polymer systems. The increase in apparent catalytic performance could be attributed to differences in reactant solubility rather than differences in mass transfer or intrinsic kinetics; higher reactant solubility enhances apparent reaction rates. Full conversion of 4-nitrophenol was achieved within three minutes for at least 10 sequential reactions demonstrating that the nanoreactors could be used for multiple reactions.  more » « less
Award ID(s):
1651957
PAR ID:
10215328
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Polymers
Volume:
12
Issue:
8
ISSN:
2073-4360
Page Range / eLocation ID:
1774
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Performing multiple reaction steps in “one pot” to avoid the need to isolate intermediates is a promising approach for reducing solvent waste associated with liquid phase chemical processing. In this work, we incorporated gold nanoparticle catalysts into polymer nanoreactors via amphiphilic block copolymer directed self-assembly. With the polymer nanoreactors dispersed in water as the bulk solvent, we demonstrated the ability to facilitate two reaction steps in one pot with spontaneous precipitation of the product from the reaction mixture. Specifically, we achieved imide synthesis from 4-nitrophenol and benzaldehyde as a model reaction. The reaction occured in water at ambient conditions; the desired 4-benzylideneaminophenol product spontaneously precipitated from the reaction mixture while the nanoreactors remained stable in dispersion. A 65% isolated yield was achieved. In contrast, PEGylated gold nanoparticles and citrate stabilized gold nanoparticles precipitated with the reaction product, which would complicate both the isolation of the product as well as reuse of the catalyst. Thus, amphiphilic nanoreactors dispersed in water are a promising approach for reducing solvent waste associated with liquid phase chemical processing by using water as the bulk solvent, eliminating the need to isolate intermediates, achieving spontaneous product separation to facilitate the recycling of the reaction mixture, and simplifying the isolation of the desired product. 
    more » « less
  2. Self-assembled metal nanoparticle-polymer nanocomposite particles as nanoreactors are a promising approach for performing liquid phase reactions using water as a bulk solvent. In this work, we demonstrate rapid, scalable self-assembly of metal nanoparticle catalyst-polymer nanocomposite particles via Flash NanoPrecipitation. The catalyst loading and size of the nanocomposite particles can be tuned independently. Using nanocomposite particles as nanoreactors and the reduction of 4-nitrophenol as a model reaction, we study the fundamental interplay of reaction and diffusion. The induction time is affected by the sequence of reagent addition, time between additions, and reagent concentration. Combined, our experiments indicate the induction time is most influenced by diffusion of sodium borohydride. Following the induction time, scaling analysis and effective diffusivity measured using NMR indicate that the observed reaction rate are reaction- rather than diffusion-limited. Furthermore, the intrinsic kinetics are comparable to ligand-free gold nanoparticles. This result indicates that the polymer microenvironment does not de-activate or block the catalyst active sites. 
    more » « less
  3. The morphology of self-assembled block copolymer aggregates is highly dependent on the relative volume fraction of the hydrophobic block. Thus, a dramatic change in the volume fraction of the hydrophobic block can elicit on-demand morphological transitions. Herein, a novel hydrophobic monomer containing a photolabile nitrobenzyl (Nb) protecting group was synthesized and incorporated into a block copolymer with poly(ethylene glycol) methacrylate. This motif allows for the hydrophobic volume fraction of the amphiphilic block copolymer to be dramatically reduced in situ to induce a morphological transition upon irradiation with UV light. Two amphiphilic block copolymers, Nb 94 and Nb 176, with hydrophobic weight fractions of 80% and 86%, respectively, were synthesized and their self-assembly in water studied. Nb 94 assembled into vesicles with R h = 235 nm and underwent a morphological transition after 21 minutes of UV irradiation to spherical micelles with R h = 27 nm, determined by dynamic light scattering and confirmed by transmission electron microscopy. At intermediate irradiation times (14–20 min), Nb 94 vesicles swelled to a larger size, but underwent a morphological transition over the course of hours or days, depending on the exact irradiation time. Nb 176 assembled into large compound vesicles with a hydrodynamic radius ( R h ) of 973 nm, as determined by dynamic light scattering (DLS), which decreased to ca. 700 nm after 300 minutes of UV irradiation with no apparent morphological transition. This study elucidates the mechanism and kinetics of the morphological transitions of block copolymer assemblies induced by a change in the hydrophobic volume fraction of the polymer. 
    more » « less
  4. We report the use of polymer N -heterocyclic carbenes (NHCs) to control the microenvironment surrounding metal nanocatalysts, thereby enhancing their catalytic performance in CO 2 electroreduction. Three polymer NHC ligands were designed with different hydrophobicity: hydrophilic poly(ethylene oxide) (PEO–NHC), hydrophobic polystyrene (PS–NHC), and amphiphilic block copolymer (BCP) (PEO- b -PS–NHC). All three polymer NHCs exhibited enhanced reactivity of gold nanoparticles (AuNPs) during CO 2 electroreduction by suppressing proton reduction. Notably, the incorporation of hydrophobic PS segments in both PS–NHC and PEO- b -PS–NHC led to a twofold increase in the partial current density for CO formation, as compared to the hydrophilic PEO–NHC. While polymer ligands did not hinder ion diffusion, their hydrophobicity altered the localized hydrogen bonding structures of water. This was confirmed experimentally and theoretically through attenuated total reflectance surface-enhanced infrared absorption spectroscopy and molecular dynamics simulation, demonstrating improved CO 2 diffusion and subsequent reduction in the presence of hydrophobic polymers. Furthermore, NHCs exhibited reasonable stability under reductive conditions, preserving the structural integrity of AuNPs, unlike thiol-ended polymers. The combination of NHC binding motifs with hydrophobic polymers provides valuable insights into controlling the microenvironment of metal nanocatalysts, offering a bioinspired strategy for the design of artificial metalloenzymes. 
    more » « less
  5. Facile and large-scale synthesis of well-defined, thermally stable silver nanoparticles protected by polymer brushes for use in practical applications is still a challenge. Recent work has reported a nanoreactor approach that can be used to synthesize these silver nanoparticles. This approach uses amphiphilic star-block copolymers, which have a hydrophilic core surrounded by a hydrophobic exterior. These polymers thus can serve as the nanoreactors. In this study, we hypothesize that the local high concentration of silver ions in the inner hydrophilic cores of these star-block copolymers facilitates the nucleation and subsequent growth of silver nanoparticles. When all silver nanoparticles nucleate from the cores of the star-block copolymers in solution, the particle size can be controlled by the core size of the polymer. To test this hypothesis, a polyisoprene-b-poly(p-tert-butylstyrene) (PI-b-PtBS) star-block copolymer was functionalized with carboxylic acid groups using a high-efficiency, photo-initiated thiol-ene click reaction. We characterized this modified polymer using proton nuclear magnetic resonance spectroscopy, and the results indicated that ~60% of the double bonds in the polyisoprene block were successfully functionalized with carboxylic acid groups. When silver ions were added to a solution of these functionalized star-block copolymers, the negatively charged carboxylic acid groups would attract the positively charged silver ions. Subsequent reduction of these Ag+ by a tert-butylamine-borane complex at room temperature produced nanosized silver particles. However, transmission electron microscopy images showed that a significant amount of relatively large silver nanoparticles grew outside the star-block copolymer nanoreactors. 
    more » « less