skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Prediction of Hydroplaning Potential Using Fully Coupled Finite Element-Computational Fluid Dynamics Tire Models
Abstract Hydroplaning is a phenomenon that occurs when a layer of water between the tire and pavement pushes the tire upward. The tire detaches from the pavement, preventing it from providing sufficient forces and moments for the vehicle to respond to driver control inputs such as breaking, accelerating, and steering. This work is mainly focused on the tire and its interaction with the pavement to address hydroplaning. Using a tire model that is validated based on results found in the literature, fluid–structure interaction (FSI) between the tire-water-road surfaces is investigated through two approaches. In the first approach, the coupled Eulerian–Lagrangian (CEL) formulation was used. The drawback associated with the CEL method is the laminar assumption and that the behavior of the fluid at length scales smaller than the smallest element size is not captured. To improve the simulation results, in the second approach, an FSI model incorporating finite element methods (FEMs) and the Navier–Stokes equations for a two-phase flow of water and air, and the shear stress transport k–ω turbulence model, was developed and validated, improving the prediction of real hydroplaning scenarios. With large computational and processing requirements, a grid dependence study was conducted for the tire simulations to minimize the mesh size yet retain numerical accuracy. The improved FSI model was applied to hydroplaning speed and cornering force scenarios.  more » « less
Award ID(s):
1650423
PAR ID:
10215338
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Journal of Fluids Engineering
Volume:
142
Issue:
10
ISSN:
0098-2202
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Being able to estimate tire/rubber friction is very important to tire engineers, materials developers, and pavement engineers. This is because of the need for estimating forces generated at the contact, optimizing tire and vehicle performance, and estimating tire wear. Efficient models for contact area and interfacial separation are key for accurate prediction of friction coefficient. Based on the contact mechanics and surface roughness, various models were developed that can predict real area of contact and penetration depth/interfacial separation. In the present work, we intend to compare the analytical contact mechanics models using experimental results and numerical analysis. Nano-indentation experiments are performed on the rubber compound to obtain penetration depth data. A finite element model of a rubber block in contact with a rough surface was developed and validated using the nano-indentation experimental data. Results for different operating conditions obtained from the developed finite element model are compared with analytical model results, and further model improvements are discussed. 
    more » « less
  2. null (Ed.)
    ABSTRACT Tire-pavement interaction noise (TPIN) is one of the main sources of exterior noise produced by vehicles traveling at greater than 50 kph. The dominant frequency content is typically within 500–1500 Hz. Structural tire vibrations are among the principal TPIN mechanisms. In this work, the structure of the tire is modeled and a new wave propagation solution to find its response is proposed. Multiple physical effects are accounted for in the formulation. In an effort to analyze the effects of curvature, a flat plate and a cylindrical shell model are presented. Orthotropic and nonuniform structural properties along the tire's transversal direction are included to account for differences between its sidewalls and belt. Finally, the effects of rotation and inflation pressure are also included in the formulation. Modeled frequency response functions are analyzed and validated. In addition, a new frequency-domain formulation is presented for the computation of input tread pattern contact forces. Finally, the rolling tire's normal surface velocity response is coupled with a boundary element model to demonstrate the radiated noise at the leading and trailing edge locations. These results are then compared with experimental data measured with an on-board sound intensity system. 
    more » « less
  3. As a step towards addressing a scarcity of references on this topic, we compared the Eulerian and Lagrangian Computational Fluid Dynamics (CFD) approaches for the solution of free-surface and Fluid–Solid Interaction (FSI) problems. The Eulerian approach uses the Finite Element Method (FEM) to spatially discretize the Navier–Stokes equations. The free surface is handled via the volume-of-fluid (VOF) and the level-set (LS) equations; an Immersed Boundary Method (IBM) in conjunction with the Nitsche’s technique were applied to resolve the fluid–solid coupling. For the Lagrangian approach, the smoothed particle hydrodynamics (SPH) method is the meshless discretization technique of choice; no additional equations are needed to handle free-surface or FSI coupling. We compared the two approaches for a flow around cylinder. The dam break test was used to gauge the performance for free-surface flows. Lastly, the two approaches were compared on two FSI problems—one with a floating rigid body dropped into the fluid and one with an elastic gate interacting with the flow. We conclude with a discussion of the robustness, ease of model setup, and versatility of the two approaches. The Eulerian and Lagrangian solvers used in this study are open-source and available in the public domain. 
    more » « less
  4. null (Ed.)
    The primary noise sources of the vehicle are the engine, exhaust, aeroacoustic noise, and tire–pavement interaction. Noise generated by the first three factors can be reduced by replacing the combustion engine with an electric motor and optimizing aerodynamic design. Currently, a dominant noise within automobiles occurs from the tire–pavement interaction over a speed of 70–80 km/h. Most noise suppression efforts aim to use sound absorbers and cavity resonators to narrow the bandwidth of acoustic frequencies using foams. We demonstrate a technique utilizing acoustic metasurfaces (AMSes) with high reflective characteristics using relatively lightweight materials for noise reduction without any change in mechanical strength or weight of the tire. A simple technique is demonstrated that utilizes acoustic metalayers with high reflective characteristics using relatively lightweight materials for noise reduction without any change in mechanical strength or weight of the tire. The proposed design can significantly reduce the noise arising from tire–pavement interaction over a broadband of acoustic frequencies under 1000 Hz and over a wide range of vehicle speeds using a negative effective dynamic mass density approach. The experiment demonstrated that the sound transmission loss of AMSes is 2–5 dB larger than the acoustic foam near the cavity mode, at 200–300 Hz. The proposed approach can be extended to the generalized area of acoustic and vibration isolation. 
    more » « less
  5. Abstract We consider the finite element approximation of a coupled fluid‐structure interaction (FSI) system, which comprises a three‐dimensional (3D) Stokes flow and a two‐dimensional (2D) fourth‐order Euler–Bernoulli or Kirchhoff plate. The interaction of these parabolic and hyperbolic partial differential equations (PDE) occurs at the boundary interface which is assumed to be fixed. The vertical displacement of the plate dynamics evolves on the flat portion of the boundary where the coupling conditions are implemented via the matching velocities of the plate and fluid flow, as well as the Dirichlet boundary trace of the pressure. This pressure term also acts as a coupling agent, since it appears as a forcing term on the flat, elastic plate domain. Our main focus in this work is to generate some numerical results concerning the approximate solutions to the FSI model. For this, we propose a numerical algorithm that sequentially solves the fluid and plate subsystems through an effective decoupling approach. Numerical results of test problems are presented to illustrate the performance of the proposed method. 
    more » « less