skip to main content

This content will become publicly available on December 1, 2022

Title: Lagrangian vs. Eulerian: An Analysis of Two Solution Methods for Free-Surface Flows and Fluid Solid Interaction Problems
As a step towards addressing a scarcity of references on this topic, we compared the Eulerian and Lagrangian Computational Fluid Dynamics (CFD) approaches for the solution of free-surface and Fluid–Solid Interaction (FSI) problems. The Eulerian approach uses the Finite Element Method (FEM) to spatially discretize the Navier–Stokes equations. The free surface is handled via the volume-of-fluid (VOF) and the level-set (LS) equations; an Immersed Boundary Method (IBM) in conjunction with the Nitsche’s technique were applied to resolve the fluid–solid coupling. For the Lagrangian approach, the smoothed particle hydrodynamics (SPH) method is the meshless discretization technique of choice; no additional equations are needed to handle free-surface or FSI coupling. We compared the two approaches for a flow around cylinder. The dam break test was used to gauge the performance for free-surface flows. Lastly, the two approaches were compared on two FSI problems—one with a floating rigid body dropped into the fluid and one with an elastic gate interacting with the flow. We conclude with a discussion of the robustness, ease of model setup, and versatility of the two approaches. The Eulerian and Lagrangian solvers used in this study are open-source and available in the public domain.
Authors:
; ;
Award ID(s):
1835674
Publication Date:
NSF-PAR ID:
10349476
Journal Name:
Fluids
Volume:
6
Issue:
12
Page Range or eLocation-ID:
460
ISSN:
2311-5521
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Hydroplaning is a phenomenon that occurs when a layer of water between the tire and pavement pushes the tire upward. The tire detaches from the pavement, preventing it from providing sufficient forces and moments for the vehicle to respond to driver control inputs such as breaking, accelerating, and steering. This work is mainly focused on the tire and its interaction with the pavement to address hydroplaning. Using a tire model that is validated based on results found in the literature, fluid–structure interaction (FSI) between the tire-water-road surfaces is investigated through two approaches. In the first approach, the coupled Eulerian–Lagrangian (CEL) formulation was used. The drawback associated with the CEL method is the laminar assumption and that the behavior of the fluid at length scales smaller than the smallest element size is not captured. To improve the simulation results, in the second approach, an FSI model incorporating finite element methods (FEMs) and the Navier–Stokes equations for a two-phase flow of water and air, and the shear stress transport k–ω turbulence model, was developed and validated, improving the prediction of real hydroplaning scenarios. With large computational and processing requirements, a grid dependence study was conducted for the tire simulations to minimizemore »the mesh size yet retain numerical accuracy. The improved FSI model was applied to hydroplaning speed and cornering force scenarios.« less
  2. Abstract. We consider a nonlinear, moving boundary, fluid-structure interaction problem between a time dependent incompressible, viscous fluid flow, and an elastic structure composed of a cylindrical shell supported by a mesh of elastic rods. The fluid flow is modeled by the time-dependent Navier- Stokes equations in a three-dimensional cylindrical domain, while the lateral wall of the cylinder is modeled by the two-dimensional linearly elastic Koiter shell equations coupled to a one-dimensional system of conservation laws defined on a graph domain, describing a mesh of curved rods. The mesh supported shell allows displacements in all three spatial directions. Two-way coupling based on kinematic and dynamic coupling conditions is assumed between the fluid and composite structure, and between the mesh of curved rods and Koiter shell. Problems of this type arise in many ap- plications, including blood flow through arteries treated with vascular prostheses called stents. We prove the existence of a weak solution to this nonlinear, moving boundary problem by using the time discretization via Lie operator splitting method combined with an Arbitrary Lagrangian-Eulerian approach, and a non-trivial extension of the Aubin-Lions-Simon compactness result to problems on moving domains.
  3. In this work, model closures of the multiphase Reynolds-averaged Navier–Stokes (RANS) equations are developed for homogeneous, fully developed gas–particle flows. To date, the majority of RANS closures are based on extensions of single-phase turbulence models, which fail to capture complex two-phase flow dynamics across dilute and dense regimes, especially when two-way coupling between the phases is important. In the present study, particles settle under gravity in an unbounded viscous fluid. At sufficient mass loadings, interphase momentum exchange between the phases results in the spontaneous generation of particle clusters that sustain velocity fluctuations in the fluid. Data generated from Eulerian–Lagrangian simulations are used in a sparse regression method for model closure that ensures form invariance. Particular attention is paid to modelling the unclosed terms unique to the multiphase RANS equations (drag production, drag exchange, pressure strain and viscous dissipation). A minimal set of tensors is presented that serve as the basis for modelling. It is found that sparse regression identifies compact, algebraic models that are accurate across flow conditions and robust to sparse training data.
  4. Abstract We present two accurate and efficient algorithms for solving the incompressible, irrotational Euler equations with a free surface in two dimensions with background flow over a periodic, multiply connected fluid domain that includes stationary obstacles and variable bottom topography. One approach is formulated in terms of the surface velocity potential while the other evolves the vortex sheet strength. Both methods employ layer potentials in the form of periodized Cauchy integrals to compute the normal velocity of the free surface, are compatible with arbitrary parameterizations of the free surface and boundaries, and allow for circulation around each obstacle, which leads to multiple-valued velocity potentials but single-valued stream functions. We prove that the resulting second-kind Fredholm integral equations are invertible, possibly after a physically motivated finite-rank correction. In an angle-arclength setting, we show how to avoid curve reconstruction errors that are incompatible with spatial periodicity. We use the proposed methods to study gravity-capillary waves generated by flow around several elliptical obstacles above a flat or variable bottom boundary. In each case, the free surface eventually self-intersects in a splash singularity or collides with a boundary. We also show how to evaluate the velocity and pressure with spectral accuracy throughout the fluid,more »including near the free surface and solid boundaries. To assess the accuracy of the time evolution, we monitor energy conservation and the decay of Fourier modes and compare the numerical results of the two methods to each other. We implement several solvers for the discretized linear systems and compare their performance. The fastest approach employs a graphics processing unit (GPU) to construct the matrices and carry out iterations of the generalized minimal residual method (GMRES).« less
  5. We consider the Euler equations for the potential flow of an ideal incompressible fluid of infinite depth with a free surface in two-dimensional geometry. Both gravity and surface tension forces are taken into account. A time-dependent conformal mapping is used which maps the lower complex half-plane of the auxiliary complex variable $w$ into the fluid’s area, with the real line of $w$ mapped into the free fluid’s surface. We reformulate the exact Eulerian dynamics through a non-canonical non-local Hamiltonian structure for a pair of the Hamiltonian variables. These two variables are the imaginary part of the conformal map and the fluid’s velocity potential, both evaluated at the fluid’s free surface. The corresponding Poisson bracket is non-degenerate, i.e. it does not have any Casimir invariant. Any two functionals of the conformal mapping commute with respect to the Poisson bracket. The new Hamiltonian structure is a generalization of the canonical Hamiltonian structure of Zakharov ( J. Appl. Mech. Tech. Phys. , vol. 9(2), 1968, pp. 190–194) which is valid only for solutions for which the natural surface parametrization is single-valued, i.e. each value of the horizontal coordinate corresponds only to a single point on the free surface. In contrast, the new non-canonical Hamiltonian equationsmore »are valid for arbitrary nonlinear solutions (including multiple-valued natural surface parametrization) and are equivalent to the Euler equations. We also consider a generalized hydrodynamics with the additional physical terms in the Hamiltonian beyond the Euler equations. In that case we identify powerful reductions that allow one to find general classes of particular solutions.« less