skip to main content

Title: Solvent manipulation of the pre-reduction metal–ligand complex and particle-ligand binding for controlled synthesis of Pd nanoparticles
Understanding how to control the nucleation and growth rates is crucial for designing nanoparticles with specific sizes and shapes. In this study, we show that the nucleation and growth rates are correlated with the thermodynamics of metal–ligand/solvent binding for the pre-reduction complex and the surface of the nanoparticle, respectively. To obtain these correlations, we measured the nucleation and growth rates by in situ small angle X-ray scattering during the synthesis of colloidal Pd nanoparticles in the presence of trioctylphosphine in solvents of varying coordinating ability. The results show that the nucleation rate decreased, while the growth rate increased in the following order, toluene, piperidine, 3,4-lutidine and pyridine, leading to a large increase in the final nanoparticle size (from 1.4 nm in toluene to 5.0 nm in pyridine). Using density functional theory (DFT), complemented by 31 P nuclear magnetic resonance and X-ray absorption spectroscopy, we calculated the reduction Gibbs free energies of the solvent-dependent dominant pre-reduction complex and the solvent-nanoparticle binding energy. The results indicate that lower nucleation rates originate from solvent coordination which stabilizes the pre-reduction complex and increases its reduction free energy. At the same time, DFT calculations suggest that the solvent coordination affects the effective capping of the surface where stronger binding solvents slow the nanoparticle growth by lowering the number of active sites (not already bound by trioctylphosphine). The findings represent a promising advancement towards understanding the microscopic connection between the metal–ligand thermodynamic interactions and the kinetics of nucleation and growth to control the size of colloidal metal nanoparticles.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Page Range / eLocation ID:
206 to 217
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Controlling the size distribution of nanoparticles is important for many applications and typically involves the use of ligands during synthesis. In this study, we show that the mechanism of size focusing involves a dependence of the growth rate on the size of the nanoparticles and the ligand coverage on the surface of the nanoparticles. To demonstrate these effects, we used in situ small angle X-ray scattering (SAXS) and population balance kinetic modeling (PBM) to investigate the evolution of size distribution during the synthesis of colloidal Pd metal nanoparticles. Despite temporal overlap of nucleation and growth, our in situ SAXS show size focusing of the distribution under different synthetic conditions (different concentrations of metal and ligand as well as solvent type). To understand the mechanism of size focusing using PBM, we systematically studied how the evolution of the nanoparticle size distribution is affected by nucleation rate, and dependence of the growth rate constant on ligand surface coverage, and size of the nanoparticles. We show that continuous nucleation contributes to size defocusing. However, continuous nucleation results in different reaction times for the nanoparticle population leading to time and size-dependent ligand surface coverage. Using density functional theory (DFT) calculations and Brønsted–Evans–Polanyi relations, we show that as the population grows, larger nanoparticles grow more slowly than smaller ones due to lower intrinsic activity and higher ligand coverage on the surface. Therefore, despite continuous nucleation, the faster growth of smaller nanoparticles in the population leads to size focusing. The size focusing behaviour (due to faster growth of smaller nanoparticles) was found to be model independent and similar results were demonstrated under different nucleation and growth pathways ( e.g. growth via ion reduction on the surface and/or monomer addition). Our results provide a microscopic connection between kinetics and thermodynamics of nanoparticle growth and metal–ligand binding, and their effect on the size distribution of colloidal nanoparticles. 
    more » « less
  2. Abstract

    The nucleation and growth of nanoparticles are critical processes determining the size, shape, and properties of resulting nanoparticles. However, understanding the complex mechanisms guiding the formation and growth of colloidal multielement alloy nanoparticles remains incomplete due to the involvement of multiple elements with different properties. This study investigates in situ colloidal synthesis of multielement alloys using transmission electron microscopy (TEM) in a liquid cell. Two different pathways for nanoparticle formation in a solution containing Au, Pt, Ir, Cu, and Ni elements, resulting in two distinct sets of particles are observed. One set exhibits high Au and Cu content, ranging from 10 to 30 nm, while the other set is multi‐elemental, with Pt, Cu, Ir, and Ni, all less than 4 nm. The findings suggest that, besides element miscibility, metal ion characteristics, particularly reduction rates, and valence numbers, significantly impact particle composition during early formation stages. Density functional theory (DFT) simulations confirm differences in nanoparticle composition and surface properties collectively influence the unique growth behaviors in each nanoparticle set. This study illuminates mechanisms underlying the formation and growth of multielement nanoparticles by emphasizing factors responsible for chemical separation and effects of interplay between composition, surface energies, and element miscibility on final nanoparticles size and structure.

    more » « less
  3. High entropy alloy (HEA) nanoparticles hold promise as active and durable (electro)catalysts. Understanding their formation mechanism will enable rational control over composition and atomic arrangement of multimetallic catalytic surface sites to maximize their activity. While prior reports have attributed HEA nanoparticle formation to nucleation and growth, there is a dearth of detailed mechanistic investigations. Here we utilize liquid phase transmission electron microscopy (LPTEM), systematic synthesis, and mass spectrometry (MS) to demonstrate that HEA nanoparticles form by aggregation of metal cluster intermediates. AuAgCuPtPd HEA nanoparticles are synthesized by aqueous co-reduction of metal salts with sodium borohydride in the presence of thiolated polymer ligands. Varying the metal : ligand ratio during synthesis showed that alloyed HEA nanoparticles formed only above a threshold ligand concentration. Interestingly, stable single metal atoms and sub-nanometer clusters are observed by TEM and MS in the final HEA nanoparticle solution, suggesting nucleation and growth is not the dominant mechanism. Increasing supersaturation ratio increased particle size, which together with observations of stable single metal atoms and clusters, supported an aggregative growth mechanism. Direct real-time observation with LPTEM imaging showed aggregation of HEA nanoparticles during synthesis. Quantitative analyses of the nanoparticle growth kinetics and particle size distribution from LPTEM movies were consistent with a theoretical model for aggregative growth. Taken together, these results are consistent with a reaction mechanism involving rapid reduction of metal ions into sub-nanometer clusters followed by cluster aggregation driven by borohydride ion induced thiol ligand desorption. This work demonstrates the importance of cluster species as potential synthetic handles for rational control over HEA nanoparticle atomic structure. 
    more » « less
  4. Abstract

    Cell adhesion occurs when integrin recognizes and binds to Arg–Gly–Asp (RGD) ligands present in fibronectin. In this work, submolecular ligand size and spacing are tuned via template‐mediated in situ growth of nanoparticles for dynamic macrophage modulation. To tune liganded gold nanoparticle (GNP) size and spacing from 3 to 20 nm, in situ localized assemblies of GNP arrays on nanomagnetite templates are engineered. 3 nm‐spaced ligands stimulate the binding of integrin, which mediates macrophage‐adhesion‐assisted pro‐regenerative polarization as compared to 20 nm‐spaced ligands, which can be dynamically anchored to the substrate for stabilizing integrin binding and facilitating dynamic macrophage adhesion. Increasing the ligand size from 7 to 20 nm only slightly promotes macrophage adhesion, not observed with 13 nm‐sized ligands. Increasing the ligand spacing from 3 to 17 nm significantly hinders macrophage adhesion that induces inflammatory polarization. Submolecular tuning of ligand spacing can dominantly modulate host macrophages.

    more » « less
  5. Abstract

    Rational synthesis of colloidal nanoparticles with desirable properties relies on precise control over the nucleation and growth kinetics, which is still not well understood. The recent development of in situ high energy synchrotron X‐ray techniques offers an excellent opportunity to quantitatively monitor the growth trajectories of colloidal nanoparticles in real time under real reaction conditions. The time‐resolved, quantitative data of the growing colloidal nanoparticles are unique to reveal the mechanism of nanoparticle formation and determine the corresponding intrinsic kinetic parameters. This review discusses the kinetics of major steps of forming colloidal nanoparticles and the capability of in situ synchrotron X‐ray techniques in studying the corresponding kinetics.

    more » « less