This content will become publicly available on January 6, 2023
- Award ID(s):
- 2045258
- Publication Date:
- NSF-PAR ID:
- 10314255
- Journal Name:
- Nanoscale
- Volume:
- 14
- Issue:
- 2
- ISSN:
- 2040-3364
- Sponsoring Org:
- National Science Foundation
More Like this
-
The fast and efficient synthesis of nanoparticles on flexible and lightweight substrates is increasingly critical for various medical and wearable applications. However, conventional high temperature (high-T) processes for nanoparticle synthesis are intrinsically incompatible with temperature-sensitive substrates, including textiles and paper ( i.e. low-T substrates). In this work, we report a non-contact, ‘fly-through’ method to synthesize nanoparticles on low-T substrates by rapid radiative heating under short timescales. As a demonstration, textile substrates loaded with platinum (Pt) salt precursor are rapidly heated and quenched as they move across a 2000 K heating source at a continuous production speed of 0.5 cm smore »
-
Anchoring nanoscale building blocks, regardless of their shape, into specific arrangements on surfaces presents a significant challenge for the fabrication of next-generation chip-based nanophotonic devices. Current methods to prepare nanocrystal arrays lack the precision, generalizability, and postsynthetic robustness required for the fabrication of device-quality, nanocrystal-based metamaterials [Q. Y. Lin et al. Nano Lett. 15, 4699–4703 (2015); V. Flauraud et al., Nat. Nanotechnol. 12, 73–80 (2017)]. To address this challenge, we have developed a synthetic strategy to precisely arrange any anisotropic colloidal nanoparticle onto a substrate using a shallow-template-assisted, DNA-mediated assembly approach. We show that anisotropic nanoparticles of virtually any shapemore »
-
Despite the well-known tendency for many alloys to undergo ordering transformations, the microscopic mechanism of ordering and its dependence on alloy composition remains largely unknown. Using the example of Pt 85 Fe 15 and Pt 65 Fe 35 alloy nanoparticles (NPs), herein we demonstrate the composition-dependent ordering processes on the single-particle level, where the nanoscale size effect allows for close interplay between surface and bulk in controlling the phase evolution. Using in situ electron microscopy observations, we show that the ordering transformation in Pt 85 Fe 15 NPs during vacuum annealing occurs via the surface nucleation and growth of L1more »
-
This article reviews the advancements and prospects of liquid cell transmission electron microscopy (TEM) imaging and analysis methods in understanding the nucleation, growth, etching, and assembly dynamics of nanocrystals. The bonding of atoms into nanoscale crystallites produces materials with nonadditive properties unique to their size and geometry. The recent application of in situ liquid cell TEM to nanocrystal development has initiated a paradigm shift, (1) from trial-and-error synthesis to a mechanistic understanding of the “synthetic reactions” responsible for the emergence of crystallites from a disordered soup of reactive species (e.g., ions, atoms, molecules) and shape-defined growth or etching; and (2) frommore »
-
The efficacy of paclitaxel (PTX) is limited due to its poor solubility, poor bioavailability, and acquired drug resistance mechanisms. Designing paclitaxel prodrugs can improve its anticancer activity and enable formulation of nanoparticles. Overall, the aim of this work is to improve the potency of paclitaxel with prodrug synthesis, nanoparticle formation, and synergistic formulation with lapatinib. Specifically, we improve potency of paclitaxel by conjugating it to α-tocopherol (vitamin E) to produce a hydrophobic prodrug (Pro); this increase in potency is indicated by the 8-fold decrease in half maximal inhibitory concentration (IC50) concentration in ovarian cancer cell line, OVCA-432, used as amore »