Given the continuous and excessive CO 2 emission into the atmosphere from anthropomorphic activities, there is now a growing demand for negative carbon emission technologies, which requires efficient capture and conversion of CO 2 to value-added chemicals. This review highlights recent advances in CO 2 capture and conversion chemistry and processes. It first summarizes various adsorbent materials that have been developed for CO 2 capture, including hydroxide-, amine-, and metal organic framework-based adsorbents. It then reviews recent efforts devoted to two types of CO 2 conversion reaction: thermochemical CO 2 hydrogenation and electrochemical CO 2 reduction. While thermal hydrogenation reactions are often accomplished in the presence of H 2 , electrochemical reactions are realized by direct use of electricity that can be renewably generated from solar and wind power. The key to the success of these reactions is to develop efficient catalysts and to rationally engineer the catalyst–electrolyte interfaces. The review further covers recent studies in integrating CO 2 capture and conversion processes so that energy efficiency for the overall CO 2 capture and conversion can be optimized. Lastly, the review briefs some new approaches and future directions of coupling direct air capture and CO 2 conversion technologies as solutions to negative carbon emission and energy sustainability.
more »
« less
CO 2 Capture: Dry and Wet CO 2 Capture from Milk‐Derived Microporous Carbons with Tuned Hydrophobicity (Adv. Sustainable Syst. 11/2020)
- Award ID(s):
- 1752771
- PAR ID:
- 10215495
- Date Published:
- Journal Name:
- Advanced Sustainable Systems
- Volume:
- 4
- Issue:
- 11
- ISSN:
- 2366-7486
- Page Range / eLocation ID:
- 2070022
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A set of novel, easily synthesized aluminum complexes, Al(κ2-N,N-2-(methylamino)pyridine)2R (R = Et, iBu) are reported. When subjected to 1 atm of CO2 pressure, each hemilabile pyridine arm dissociates and facilitates cooperative activation of the CO2 substrate reminiscent of a Frustrated Lewis Pair. This reaction has limited precedent for Al/N based Lewis Pair systems, and this is the first system readily shown to sequester multiple equivalents of CO2 per aluminum center. The ethyl variant then reacts further, inserting a third equivalent of CO2 into the aluminum alkyl to generate an aluminum carboxylate. Examples of this type of reactivity are rare under thermal conditions. A joint experimental/computational study validates the proposed reaction mechanism.more » « less
-
Abstract The capture, utilization, and storage of CO2are the primary options to minimize the adverse effects of global warming and related climate change resulting from increased anthropogenic CO2emissions. In recent years, amino acids and amino acid‐based ionic liquids (AAILs) are proposed as promising alternatives to the traditional aqueous amine solvent‐based CO2capture technology due to the presence of the ─NH2group and a CO2adsorption mechanism like amines, but with many additional advantages. Besides CO2absorption in solvent form, amino acids/AAILs‐functionalized porous sorbents demonstrate potential in CO2adsorption technology, a promising alternative to solvent‐based CO2absorption technology, as they can avoid the huge energy penalty associated with aqueous solution regeneration by heating. Additionally, amino acids/AAILs, with their CO2capture abilities, have demonstrated their potential in other promising CO2sequestration technologies: direct air capture, CO2mineralization using alkaline industrial waste, and conversion of CO2into value‐added products. This article reviews the mechanism, comparative performance, and prospects of amino acid‐based state‐of‐the‐art technologies for CO2absorption and adsorption, direct air capture, bio‐mineralization, and conversion of CO2into value‐added products, which is helpful for the further development of amino acid‐based CO2sequestration technologies.more » « less
An official website of the United States government

