skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: RAM-2 Drill system development: an upgrade of the Rapid Air Movement Drill
Abstract Significant upgrades to the Rapid Air Movement (RAM) Drill were developed and tested by the US Ice Drilling Program in 2016 through 2020 for the U.S. National Science Foundation. The design of the system leverages the existing infrastructure of the RAM Drill with the goal of greatly reducing the logistical burden of deploying the drill while maintaining the ability to drill an access hole in firn and ice to 100 m in 40 min or less. In this paper, characteristics of the drill are described, along with a description of the drill performance during the testing at Raven Camp in Greenland and at WAIS Divide Camp in Antarctica.  more » « less
Award ID(s):
1836328
PAR ID:
10215547
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Annals of Glaciology
ISSN:
0260-3055
Page Range / eLocation ID:
1 to 10
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract The Winkie Drill is an agile, commercially available rock coring system. The U.S. Ice Drilling Program has modified a Winkie Drill for subglacial rock and ice/rock interface coring, as well as drilling and coring access holes through ice. The original gasoline engine was replaced with an electric motor though the two-speed gear reducer and Unipress hand feed system were maintained. Using standard aluminum AW34 drill rod (for 33.5 mm diameter core), the system has a depth capability of 120 m. The drill uses forward fluid circulation in a closed loop system. The drilling fluid is Isopar K, selected for favorable properties in polar environment. When firn or snow is present at the drill site, casing with an inflatable packer can be deployed to contain the drill fluid. The Winkie Drill will operate from sea level to high altitudes and operation results in minimal environmental impact. The drill can be easily and quickly assembled and disassembled in the field by two people. All components can be transported by Twin Otter or helicopter to the field site. 
    more » « less
  2. null (Ed.)
    Abstract A new drilling system was developed by the US Ice Drilling Program (IDP) to rapidly drill through overlying ice to collect subglacial rock cores. The Agile Sub-Ice Geological (ASIG) Drill system is capable of drilling up to 700 m of ice in a continuous manner. Intermittent ice core samples can be taken as needed. Ten-plus meters of subglacial bedrock and unconsolidated, frozen sediment cores can be drilled with wireline core retrieval. The functionality of the drill system was demonstrated in 2016–17 at the Pirrit Hills, Antarctica where 8 m of high-quality, continuous granite core was retrieved beneath 150 m of ice. The particulars of the drill system development, features and performance are discussed. 
    more » « less
  3. This dataset contains measurements of sea ice thickness along drill lines. These measurements were taken in the Central Arctic during Leg 4 of the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition, July 14-29, 2020. Thickness measurements include observations of rafted ice, false bottoms, and sea ice freeboard. Measurements were made through holes in the ice made with a 2-inch sea ice drill, with thickness and features observations made using a combination of thickness tape and a snow stick adapted for the purpose. The primary aim of these observations was to capture the presence and distribution of false bottom features under the ice during the melt season. 
    more » « less
  4. Lake Junín, located in the uppermost Amazon Basin in central Peru, was drilled as part of the International Continental Drilling Program in 2015. A piston core with a composite length of ~95 m provides a continuous archive of upstream glacial activity spanning ~700,000 years. The age-depth model was established with 80 AMS 14C dates, 12 U-Th dated intervals of authigenic calcite, and 17 geomagnetic relative paleointensity tie points, and yields an age of 677±20 ka at 88 m. Four samples from near the base of the core reveal normal polarity paleomagnetic directions, consistent with an age younger than ~773 ka. The composite section comprises intervals of siliciclastic sediment intercalated with intervals dominated by authigenic calcite. The siliciclastic-rich intervals have a consistent signature, with relatively low concentrations of carbonate and organic carbon, and high values of bulk density, magnetic susceptibility and concentrations of elements derived from glacial erosion of the non-carbonate fraction of the regional bedrock. We find that tropical glaciers tracked changes in global ice volume and followed a clear ~100,000-year periodicity. Two caves, Huagapo and Pacupahuain, are located within 25 km of Lake Junín and provide a basis for testing and refining the age model of the Lake Junín drill core based on the high precision and accuracy of Uranium series dates for speleothems from these caves. The assumption here is that significant changes in regional ice volume will also be recorded in the 18O of cave drip water and thus in speleothems. Our initial target interval is the 9-8 marine isotope stage (MIS) boundary (~300 ka), which is recorded in the Junín drill core as an abrupt increase in the influx of glacigenic sediment, and in stalagmite 22-22 from Huagapo Cave as an abrupt 4.5‰ decrease in 18Ocalcite. The age of the onset of this transition in the Junín drill core is about 25 kyr older than that in Stal 22-22, and this difference is within the age model error envelope for the Junín drill core. Similar MIS boundaries provide the basis for adjustments in the Junín age model, which will improve the precision of correlation of this continuous record of tropical glaciation with paleoclimate archives in extra tropical regions. 
    more » « less
  5. A gas hydrate assessment at International Ocean Discovery Program Expedition 400 drill sites was conducted using downhole logging and core data. Here, we calculate and present the base of gas hydrate stability zone at Expedition 400 drill sites in Baffin Bay, northwest Greenland. We used data from downhole logs and sediment cores from Sites U1603, U1604, U1607, and U1608 to assess hydrate and did not find evidence for the presence of hydrate. At Site U1606, only core data were acquired that showed a decrease in pore water salinity, potentially indicating the presence of hydrate; however, further confirmation was not possible due to the unavailability of downhole logging data. Because of the limitation of the acquired data at the drill sites, a further assessment to confirm the presence of hydrate was not possible. Although hydrate was not identified at any drill sites, hydrate might still be present in the region. 
    more » « less