skip to main content

Title: From the Dexterous Surgical Skill to the Battlefield—A Robotics Exploratory Study
ABSTRACT Introduction Short response time is critical for future military medical operations in austere settings or remote areas. Such effective patient care at the point of injury can greatly benefit from the integration of semi-autonomous robotic systems. To achieve autonomy, robots would require massive libraries of maneuvers collected with the goal of training machine learning algorithms. Although this is attainable in controlled settings, obtaining surgical data in austere settings can be difficult. Hence, in this article, we present the Dexterous Surgical Skill (DESK) database for knowledge transfer between robots. The peg transfer task was selected as it is one of the six main tasks of laparoscopic training. In addition, we provide a machine learning framework to evaluate novel transfer learning methodologies on this database. Methods A set of surgical gestures was collected for a peg transfer task, composed of seven atomic maneuvers referred to as surgemes. The collected Dexterous Surgical Skill dataset comprises a set of surgical robotic skills using the four robotic platforms: Taurus II, simulated Taurus II, YuMi, and the da Vinci Research Kit. Then, we explored two different learning scenarios: no-transfer and domain-transfer. In the no-transfer scenario, the training and testing data were obtained from the same more » domain; whereas in the domain-transfer scenario, the training data are a blend of simulated and real robot data, which are tested on a real robot. Results Using simulation data to train the learning algorithms enhances the performance on the real robot where limited or no real data are available. The transfer model showed an accuracy of 81% for the YuMi robot when the ratio of real-tosimulated data were 22% to 78%. For the Taurus II and the da Vinci, the model showed an accuracy of 97.5% and 93%, respectively, training only with simulation data. Conclusions The results indicate that simulation can be used to augment training data to enhance the performance of learned models in real scenarios. This shows potential for the future use of surgical data from the operating room in deployable surgical robots in remote areas. « less
Authors:
; ; ; ; ; ; ; ;
Award ID(s):
1850243 1918327
Publication Date:
NSF-PAR ID:
10215561
Journal Name:
Military Medicine
Volume:
186
Issue:
Supplement_1
Page Range or eLocation-ID:
288 to 294
ISSN:
0026-4075
Sponsoring Org:
National Science Foundation
More Like this
  1. Current commercially available robotic minimally invasive surgery (RMIS) platforms provide no haptic feedback of tool interactions with the surgical environment. As a consequence, novice robotic surgeons must rely exclusively on visual feedback to sense their physical interactions with the surgical environment. This technical limitation can make it challenging and time-consuming to train novice surgeons to proficiency in RMIS. Extensive prior research has demonstrated that incorporating haptic feedback is effective at improving surgical training task performance. However, few studies have investigated the utility of providing feedback of multiple modalities of haptic feedback simultaneously (multi-modality haptic feedback) in this context, and these studies have presented mixed results regarding its efficacy. Furthermore, the inability to generalize and compare these mixed results has limited our ability to understand why they can vary significantly between studies. Therefore, we have developed a generalized, modular multi-modality haptic feedback and data acquisition framework leveraging the real-time data acquisition and streaming capabilities of the Robot Operating System (ROS). In our preliminary study using this system, participants complete a peg transfer task using a da Vinci robot while receiving haptic feedback of applied forces, contact accelerations, or both via custom wrist-worn haptic devices. Results highlight the capability of our systemmore »in running systematic comparisons between various single and dual-modality haptic feedback approaches.« less
  2. An important problem in designing human-robot systems is the integration of human intent and performance in the robotic control loop, especially in complex tasks. Bimanual coordination is a complex human behavior that is critical in many fine motor tasks, including robot-assisted surgery. To fully leverage the capabilities of the robot as an intelligent and assistive agent, online recognition of bimanual coordination could be important. Robotic assistance for a suturing task, for example, will be fundamentally different during phases when the suture is wrapped around the instrument (i.e., making a c- loop), than when the ends of the suture are pulled apart. In this study, we develop an online recognition method of bimanual coordination modes (i.e., the directions and symmetries of right and left hand movements) using geometric descriptors of hand motion. We (1) develop this framework based on ideal trajectories obtained during virtual 2D bimanual path following tasks performed by human subjects operating Geomagic Touch haptic devices, (2) test the offline recognition accuracy of bi- manual direction and symmetry from human subject movement trials, and (3) evalaute how the framework can be used to characterize 3D trajectories of the da Vinci Surgical System’s surgeon-side manipulators during bimanual surgical training tasks.more »In the human subject trials, our geometric bimanual movement classification accuracy was 92.3% for movement direction (i.e., hands moving together, parallel, or away) and 86.0% for symmetry (e.g., mirror or point symmetry). We also show that this approach can be used for online classification of different bimanual coordination modes during needle transfer, making a C loop, and suture pulling gestures on the da Vinci system, with results matching the expected modes. Finally, we discuss how these online estimates are sensitive to task environment factors and surgeon expertise, and thus inspire future work that could leverage adaptive control strategies to enhance user skill during robot-assisted surgery.« less
  3. Robot-assisted minimally invasive surgery has made a substantial impact in operating rooms over the past few decades with their high dexterity, small tool size, and impact on adoption of minimally invasive techniques. In recent years, intelligence and different levels of surgical robot autonomy have emerged thanks to the medical robotics endeavors at numerous academic institutions and leading surgical robot companies. To accelerate interaction within the research community and prevent repeated development, we propose the Collaborative Robotics Toolkit (CRTK), a common API for the RAVEN-II and da Vinci Research Kit (dVRK) - two open surgical robot platforms installed at more than 40 institutions worldwide. CRTK has broadened to include other robots and devices, including simulated robotic systems and industrial robots. This common API is a community software infrastructure for research and education in cutting edge human-robot collaborative areas such as semi-autonomous teleoperation and medical robotics. This paper presents the concepts, design details and the integration of CRTK with physical robot systems and simulation platforms.
  4. Robot-assisted minimally invasive surgery has made a substantial impact in operating rooms over the past few decades with their high dexterity, small tool size, and impact on adoption of minimally invasive techniques. In recent years, intelligence and different levels of surgical robot autonomy have emerged thanks to the medical robotics endeavors at numerous academic institutions and leading surgical robot companies. To accelerate interaction within the research community and prevent repeated development, we propose the Collaborative Robotics Toolkit (CRTK), a common API for the RAVEN-II and da Vinci Research Kit (dVRK) - two open surgical robot platforms installed at more than 40 institutions worldwide. CRTK has broadened to include other robots and devices, including simulated robotic systems and industrial robots. This common API is a community software infrastructure for research and education in cutting edge human-robot collaborative areas such as semi-autonomous teleoperation and medical robotics. This paper presents the concepts, design details and the integration of CRTK with physical robot systems and simulation platforms.
  5. Abstract

    Telementoring platforms can help transfer surgical expertise remotely. However, most telementoring platforms are not designed to assist in austere, pre-hospital settings. This paper evaluates the system for telementoring with augmented reality (STAR), a portable and self-contained telementoring platform based on an augmented reality head-mounted display (ARHMD). The system is designed to assist in austere scenarios: a stabilized first-person view of the operating field is sent to a remote expert, who creates surgical instructions that a local first responder wearing the ARHMD can visualize as three-dimensional models projected onto the patient’s body. Our hypothesis evaluated whether remote guidance with STAR could lead to performing a surgical procedure better, as opposed to remote audio-only guidance. Remote expert surgeons guided first responders through training cricothyroidotomies in a simulated austere scenario, and on-site surgeons evaluated the participants using standardized evaluation tools. The evaluation comprehended completion time and technique performance of specific cricothyroidotomy steps. The analyses were also performed considering the participants’ years of experience as first responders, and their experience performing cricothyroidotomies. A linear mixed model analysis showed that using STAR was associated with higher procedural and non-procedural scores, and overall better performance. Additionally, a binary logistic regression analysis showed that using STARmore »was associated to safer and more successful executions of cricothyroidotomies. This work demonstrates that remote mentors can use STAR to provide first responders with guidance and surgical knowledge, and represents a first step towards the adoption of ARHMDs to convey clinical expertise remotely in austere scenarios.

    « less