Mobile applications (apps) have exploded in popularity, with billions of smartphone users using millions of apps available through markets such as the Google Play Store or the Apple App Store. While these apps have rich and useful functionality that is publicly exposed to end users, they also contain hidden behaviors that are not disclosed, such as backdoors and blacklists designed to block unwanted content. In this paper, we show that the input validation behavior---the way the mobile apps process and respond to data entered by users---can serve as a powerful tool for uncovering such hidden functionality. We therefore have developed a tool, InputScope, that automatically detects both the execution context of user input validation and also the content involved in the validation, to automatically expose the secrets of interest. We have tested InputScope with over 150,000 mobile apps, including popular apps from major app stores and pre-installed apps shipped with the phone, and found 12,706 mobile apps with backdoor secrets and 4,028 mobile apps containing blacklist secrets. 
                        more » 
                        « less   
                    
                            
                            Towards a Practical Differentially Private Collaborative Phone Blacklisting System
                        
                    
    
            Spam phone calls have been rapidly growing from nuisance to an increasingly effective scam delivery tool. To counter this increasingly successful attack vector, a number of commercial smartphone apps that promise to block spam phone calls have appeared on app stores, and are now used by hundreds of thousands or even millions of users. However, following a business model similar to some online social network services, these apps often collect call records or other potentially sensitive information from users’ phones with little or no formal privacy guarantees. In this paper, we study whether it is possible to build a practical collaborative phone blacklisting system that makes use of local differential privacy (LDP) mechanisms to provide clear privacy guarantees. We analyze the challenges and trade-offs related to using LDP, evaluate our LDP-based system on real-world user-reported call records collected by the FTC, and show that it is possible to learn a phone blacklist using a reasonable overall privacy budget and at the same time preserve users’ privacy while maintaining utility for the learned blacklist. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1943046
- PAR ID:
- 10215647
- Date Published:
- Journal Name:
- ACSAC 2020: Annual Computer Security Applications Conference
- Page Range / eLocation ID:
- 100 to 115
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Telephone users are receiving more and more unwanted calls including spam and scam calls because of the transfer-without-verification nature of global telephone networks, which allows anyone to call any other numbers. To avoid unwanted calls, telephone users often ignore or block all incoming calls from unknown numbers, resulting in the missing of legitimate calls from new callers. This paper takes an end-to-end perspective to present a solution to block unwanted calls while allowing users to define the policies of acceptable calls. The proposed solution involves a new infrastructure based on anonymous credentials, which enables anonymous caller authentication and policy definition. Our design decouples caller authentication and call session initiation and introduces a verification code to interface and bind the two processes. This design minimizes changes to telephone networks, reduces latency to call initiation, and eliminates the need for a call-time data channel. A prototype of the system is implemented to evaluate its feasibility.more » « less
- 
            null (Ed.)Unsolicited calls are one of the most prominent security issues facing individuals today. Despite wide-spread anecdotal discussion of the problem, many important questions remain unanswered. In this paper, we present the first large-scale, longitudinal analysis of unsolicited calls to a honeypot of up to 66,606 lines over 11 months. From call metadata we characterize the long-term trends of unsolicited calls, develop the first techniques to measure voicemail spam, wangiri attacks, and identify unexplained high-volume call incidences. Additionally, we mechanically answer a subset of the call attempts we receive to cluster related calls into operational campaigns, allowing us to characterize how these campaigns use telephone numbers. Critically, we find no evidence that answering unsolicited calls increases the amount of unsolicited calls received, overturning popular wisdom. We also find that we can reliably isolate individual call campaigns, in the process revealing the extent of two distinct Social Security scams while empirically demonstrating the majority of campaigns rarely reuse phone numbers. These analyses comprise powerful new tools and perspectives for researchers, investigators, and a beleaguered public.more » « less
- 
            Security research on smart devices mostly focuses on malware installation and activation, privilege escalation, remote control, financial charges, personal information stealing, and permission use. Less attention has been paid to the deceptive mechanisms, which are critical for the success of malware on smart devices. Generally, malware first gets installed and then continues operating on the device without attracting suspicion from users. To do so, smart device malware uses various techniques to conceal itself, e.g., hiding activity, muting the phone, and deleting call logs. In this work, we developed an approach to semi-automatically reveal unknown malware hiding techniques. First, it extracts SMH behaviors from malware descriptions by using natural language processing techniques. Second, it maps SMH behaviors to SMH-related APIs based on the analysis of API documents. Third, it performs static analysis on the malware apps that contain unknown SMH behaviors to extract the code segments related to the SMH API calls. For those verified SMH code segments, we describe the techniques used for unknown SMH behaviors based on the code segments. Our experiment tested 119 malware apps with hiding behaviors. The F-measure is 85.58%, indicating that our approach is quite effective.more » « less
- 
            Mobile and web apps are increasingly relying on the data generated or provided by users such as from their uploaded documents and images. Unfortunately, those apps may raise significant user privacy concerns. Specifically, to train or adapt their models for accurately processing huge amounts of data continuously collected from millions of app users, app or service providers have widely adopted the approach of crowdsourcing for recruiting crowd workers to manually annotate or transcribe the sampled ever-changing user data. However, when users' data are uploaded through apps and then become widely accessible to hundreds of thousands of anonymous crowd workers, many human-in-the-loop related privacy questions arise concerning both the app user community and the crowd worker community. In this paper, we propose to investigate the privacy risks brought by this significant trend of large-scale crowd-powered processing of app users' data generated in their daily activities. We consider the representative case of receipt scanning apps that have millions of users, and focus on the corresponding receipt transcription tasks that appear popularly on crowdsourcing platforms. We design and conduct an app user survey study (n=108) to explore how app users perceive privacy in the context of using receipt scanning apps. We also design and conduct a crowd worker survey study (n=102) to explore crowd workers' experiences on receipt and other types of transcription tasks as well as their attitudes towards such tasks. Overall, we found that most app users and crowd workers expressed strong concerns about the potential privacy risks to receipt owners, and they also had a very high level of agreement with the need for protecting receipt owners' privacy. Our work provides insights on app users' potential privacy risks in crowdsourcing, and highlights the need and challenges for protecting third party users' privacy on crowdsourcing platforms. We have responsibly disclosed our findings to the related crowdsourcing platform and app providers.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    