skip to main content

Title: Using power, privilege, and intersectionality to understand, disrupt, and dismantle oppressive structures within academia: A design case
Many of us are working to create a more inclusive and socially just culture within engineering education and engineering. Despite significant effort, marginalization and discrimination continue, buoyed by systems of oppression. How can we disrupt and dismantle oppressive systems in engineering education? In our work, we explore how power and privilege are enacted within leadership teams that aim to create revolutionary changes within engineering departments. Based on this work, we developed the POWER protocol (Privilege and Oppression: Working for Equitable Recourse), a workshop that guides engineering educators to identify and understand the intersectional nature of power and privilege before planning strategies to disrupt, disarm, and dismantle it. In this paper, we present a design case to show how this workshop has evolved. We provide the POWER protocol in the appendix so that others can adapt this workshop for their own contexts. In the interactive session at CoNECD, we will take attendees through part of the POWER protocol (we will scope the workshop to fit in the time allotted; the full workshop is 1.5 hours) to examine how power, privilege, and intersectionality can help attendees frame their experiences and begin to understand how their everyday experiences may be influenced by systemic oppression. more » To guide this process, we orient around the question: How can we become aware of power and privilege on collaborative academic teams in order to better affect social change and improve interdisciplinary and cross-identity/boundary interactions, communication, and inclusivity? We hope that through interactive sessions such as this that we can all become more persistent and sophisticated in our efforts to dismantle some of these forms of power and privilege within the university, especially those aspects that continue to oppress and oftentimes push marginalized people and perspectives out of academia. Our interactive approach will position attendees to bring this protocol back to their institutions and adapt it to their own contexts. In the tradition of the design case such as those published by the International Journal of Designs for Learning, we detail how our contexts and the literature informed the iterative development of the POWER protocol in this paper. We provide a vivid account of the POWER protocol and a facilitation guide that others can use and adapt in their own contexts. Using a narrative format, we share a forthright account of our development process. Design cases are valuable in highlighting distinctive aspects of how a design came to be; by sharing our design decisions along with the design, others may gain insight into both what has made our design successful, and where it may be brittle when used in new contexts. Finally, we describe how we will engage attendees in the CoNECD session. « less
Authors:
; ; ; ;
Award ID(s):
1914578
Publication Date:
NSF-PAR ID:
10215732
Journal Name:
CoNECD Conference
Page Range or eLocation-ID:
1-25
Sponsoring Org:
National Science Foundation
More Like this
  1. We (the facilitators) work as social scientists and engineering education researchers from different universities on the NSF-supported program, Revolutionizing Engineering Departments (RED) ( https://www.nsf.gov/pubs/2017/nsf17501/nsf17501.htm ). We began to notice how power and privilege were enacted on our teams, which consisted of diverse team members (e.g., diverse in disciplinary affiliation, role in the university, gender, race, LGBTQIA+ status). This motivated a research project and workshops/special sessions such as the one proposed here, where we explore how power and privilege are enacted within interdisciplinary teams so that we can begin to dismantle systemic oppressions within academia [1] , [2] . The POWER special session (Privilege and Oppression: Working for Equitable Recourse) was developed to guide engineering educators to identify and understand the intersectional nature of power and privilege before planning strategies to disrupt, disarm, and dismantle it.
  2. In June 2020, at the annual conference of the American Society for Engineering Education (ASEE), which was held entirely online due to the impacts of COVID-19 (SARS-CoV-2), engineering education researchers and social justice scholars diagnosed the spread of two diseases in the United States: COVID-19 and racism. During a virtual workshop (T614A) titled, “Using Power, Privilege, and Intersectionality as Lenses to Understand our Experiences and Begin to Disrupt and Dismantle Oppressive Structures Within Academia,” Drs. Nadia Kellam, Vanessa Svihla, Donna Riley, Alice Pawley, Kelly Cross, Susannah Davis, and Jay Pembridge presented what we might call a pathological analysis of institutionalized racism and various other “isms.” In order to address the intersecting impacts of this double pandemic, they prescribed counter practices and protocols of anti-racism, and strategies against other oppressive “isms” in academia. At the beginning of the virtual workshop, the presenters were pleasantly surprised to see that they had around a hundred attendees. Did the online format of the ASEE conference afford broader exposure of the workshop? Did recent uprising of Black Lives Matter (BLM) protests across the country, and internationally, generate broader interest in their topic? Whatever the case, at a time when an in-person conference could not bemore »convened without compromising public health safety, ASEE’s virtual conference platform, furnished by Pathable and supplemented by Zoom, made possible the broader social impacts of Dr. Svihla’s land acknowledgement of the unceded Indigenous lands from which she was presenting. Svihla attempted to go beyond a hollow gesture by including a hyperlink in her slides to a COVID-19 relief fund for the Navajo Nation, and encouraged attendees to make a donation as they copied and pasted the link in the Zoom Chat. Dr. Cross’s statement that you are either a racist or an anti-racist at this point also promised broader social impacts in the context of the virtual workshop. You could feel the intensity of the BLM social movements and the broader political climate in the tone of the presenters’ voices. The mobilizing masses on the streets resonated with a cutting-edge of social justice research and education at the ASEE virtual conference. COVID-19 has both exacerbated and made more obvious the unevenness and inequities in our educational practices, processes, and infrastructures. This paper is an extension of a broader collaborative research project that accounts for how an exceptional group of engineering educators have taken this opportunity to socially broaden their curricula to include not just public health matters, but also contemporary political and social movements. Engineering educators for change and advocates for social justice quickly recognized the affordances of diverse forms of digital technologies, and the possibilities of broadening their impact through educational practices and infrastructures of inclusion, openness, and accessibility. They are makers of what Gary Downy calls “scalable scholarship”—projects in support of marginalized epistemologies that can be scaled up from ideation to practice in ways that unsettle and displace the dominant epistemological paradigm of engineering education.[1] This paper is a work in progress. It marks the beginning of a much lengthier project that documents the key positionality of engineering educators for change, and how they are socially situated in places where they can connect social movements with industrial transitions, and participate in the production of “undone sciences” that address “a structured absence that emerges from relations of inequality.”[2] In this paper, we offer a brief glimpse into ethnographic data we collected virtually through interviews, participant observation, and digital archiving from March 2019 to August 2019, during the initial impacts of COVID-19 in the United States. The collaborative research that undergirds this paper is ongoing, and what is presented here is a rough and early articulation of ideas and research findings that have begun to emerge through our engagement with engineering educators for change. This paper begins by introducing an image concept that will guide our analysis of how, in this historical moment, forms of social and racial justice are finding their way into the practices of engineering educators through slight changes in pedagogical techniques in response the debilitating impacts of the pandemic. Conceptually, we are interested in how small and subtle changes in learning conditions can socially broaden the impact of engineering educators for change. After introducing the image concept that guides this work, we will briefly discuss methodology and offer background information about the project. Next, we discuss literature that revolves around the question, what is engineering education for? Finally, we introduce the notion of situating engineering education and give readers a brief glimpse into our ethnographic data. The conclusion will indicate future directions for writing, research, and intervention.« less
  3. Our work with teams funded through the National Science Foundation REvolutionizing Engineering and Computer Science Departments (RED) program began in 2015. Our project—funded first by a NSF EAGER grant, and then by a NSF RFE grant—focuses on understanding how the RED teams make change on their campuses and how this information about change can be captured and communicated to other STEM programs that seek to make change happen. Because our RED Participatory Action Research (REDPAR) Project is a collaboration between researchers (Center for Evaluation & Research for STEM Equity at the University of Washington) and practitioners (Making Academic Change Happen Workshop at Rose-Hulman Institute of Technology), we have challenged ourselves to develop means of communication that allow for both aspects of the work—both research and practice—to be treated equitably. As a result, we have created a new dissemination channel—the RED Participatory Action Project Tipsheet. The tipsheet format accomplishes several important goals. First, the content is drawn from both the research conducted with the RED teams and the practitioners’ work with the teams. Each tipsheet takes up a single theme and grounds the theme in the research literature while offering practical tips for applying the information. Second, the format is accessiblemore »to a wide spectrum of potential users, remaining free of jargon and applicable to multiple program and departmental contexts. Third, by publishing the tipsheets ourselves, rather than submitting them to an engineering education research journal, we make the information timely and freely available. We can make a tipsheet as soon as a theme emerges from the intersection of research data and observations of practice. During the poster session at ASEE 2019, we will share the three REDPAR Tipsheets that have been produced thus far: Creating Strategic Partnerships, Communicating Change, and Shared Vision. We will also work with attendees to demonstrate how the tipsheet content is adaptable to the attendees’ specific academic context. Our goal for the poster session is to provide attendees with tipsheet resources that are useful to their specific change project.« less
  4. Our work with teams funded through the National Science Foundation REvolutionizing Engineering and Computer Science Departments (RED) program began in 2015. Our project—funded first by a NSF EAGER grant, and then by a NSF RFE grant—focuses on understanding how the RED teams make change on their campuses and how this information about change can be captured and communicated to other STEM programs that seek to make change happen. Because our RED Participatory Action Research (REDPAR) Project is a collaboration between researchers (Center for Evaluation & Research for STEM Equity at the University of Washington) and practitioners (Making Academic Change Happen Workshop at Rose-Hulman Institute of Technology), we have challenged ourselves to develop means of communication that allow for both aspects of the work—both research and practice—to be treated equitably. As a result, we have created a new dissemination channel—the RED Participatory Action Project Tipsheet. The tipsheet format accomplishes several important goals. First, the content is drawn from both the research conducted with the RED teams and the practitioners’ work with the teams. Each tipsheet takes up a single theme and grounds the theme in the research literature while offering practical tips for applying the information. Second, the format is accessiblemore »to a wide spectrum of potential users, remaining free of jargon and applicable to multiple program and departmental contexts. Third, by publishing the tipsheets ourselves, rather than submitting them to an engineering education research journal, we make the information timely and freely available. We can make a tipsheet as soon as a theme emerges from the intersection of research data and observations of practice. During the poster session at ASEE 2019, we will share the three REDPAR Tipsheets that have been produced thus far: Creating Strategic Partnerships, Communicating Change, and Shared Vision. We will also work with attendees to demonstrate how the tipsheet content is adaptable to the attendees’ specific academic context. Our goal for the poster session is to provide attendees with tipsheet resources that are useful to their specific change project.« less
  5. COVID-19 has altered the landscape of teaching and learning. For those in in-service teacher education, workshops have been suspended causing programs to adapt their professional development to a virtual space to avoid indefinite postponement or cancellation. This paradigm shift in the way we conduct learning experiences creates several logistical and pedagogical challenges but also presents an important opportunity to conduct research about how learning happens in these new environments. This paper describes the approach we took to conduct research in a series of virtual workshops aimed at teaching rural elementary teachers about engineering practices and how to teach a unit from an engineering curriculum. Our work explores how engineering concepts and practices are socially constructed through interactions with teachers, students, and artifacts. This approach, called interactional ethnography has been used by the authors and others to learn about engineering teaching and learning in precollege classrooms. The approach relies on collecting data during instruction, such as video and audio recordings, interviews, and artifacts such as journal entries and photos of physical designs. Findings are triangulated by analyzing these data sources. This methodology was going to be applied in an in-person engineering education workshop for rural elementary teachers, however the pandemic forcedmore »us to conduct the workshops remotely. Teachers, working in pairs, were sent workshop supplies, and worked together during the training series that took place over Zoom over four days for four hours each session. The paper describes how we collected video and audio of teachers and the facilitators both in whole group and in breakout rooms. Class materials and submissions of photos and evaluations were managed using Google Classroom. Teachers took photos of their work and scanned written materials and submitted them all by email. Slide decks were shared by the users and their group responses were collected in real time. Workshop evaluations were collected after each meeting using Google Forms. Evaluation data suggest that the teachers were engaged by the experience, learned significantly about engineering concepts and the knowledge-producing practices of engineers, and feel confident about applying engineering activities in their classrooms. This methodology should be of interest to the membership for three distinct reasons. First, remote instruction is a reality in the near-term but will likely persist in some form. Although many of us prefer to teach in person, remote learning allows us to reach many more participants, including those living in remote and rural areas who cannot easily attend in-person sessions with engineering educators, so it benefits the field to learn how to teach effectively in this way. Second, it describes an emerging approach to engineering education research. Interactional ethnography has been applied in precollege classrooms, but this paper demonstrates how it can also be used in teacher professional development contexts. Third, based on our application of interactional ethnography to an education setting, readers will learn specifically about how to use online collaborative software and how to collect and organize data sources for research purposes.« less