Abstract Single-molecule Förster-resonance energy transfer (smFRET) experiments allow the study of biomolecular structure and dynamics in vitro and in vivo. We performed an international blind study involving 19 laboratories to assess the uncertainty of FRET experiments for proteins with respect to the measured FRET efficiency histograms, determination of distances, and the detection and quantification of structural dynamics. Using two protein systems with distinct conformational changes and dynamics, we obtained an uncertainty of the FRET efficiency ≤0.06, corresponding to an interdye distance precision of ≤2 Å and accuracy of ≤5 Å. We further discuss the limits for detecting fluctuations in this distance range and how to identify dye perturbations. Our work demonstrates the ability of smFRET experiments to simultaneously measure distances and avoid the averaging of conformational dynamics for realistic protein systems, highlighting its importance in the expanding toolbox of integrative structural biology.
more »
« less
Automated and optimally FRET-assisted structural modeling
Abstract FRET experiments can provide state-specific structural information of complex dynamic biomolecular assemblies. However, to overcome the sparsity of FRET experiments, they need to be combined with computer simulations. We introduce a program suite with ( i ) an automated design tool for FRET experiments, which determines how many and which FRET pairs should be used to minimize the uncertainty and maximize the accuracy of an integrative structure, ( ii ) an efficient approach for FRET-assisted coarse-grained structural modeling, and all-atom molecular dynamics simulations-based refinement, and ( iii ) a quantitative quality estimate for judging the accuracy of FRET-derived structures as opposed to precision. We benchmark our tools against simulated and experimental data of proteins with multiple conformational states and demonstrate an accuracy of ~3 Å RMSD Cα against X-ray structures for sets of 15 to 23 FRET pairs. Free and open-source software for the introduced workflow is available at https://github.com/Fluorescence-Tools . A web server for FRET-assisted structural modeling of proteins is available at http://nmsim.de .
more »
« less
- Award ID(s):
- 1749778
- PAR ID:
- 10215739
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Förster resonance energy transfer (FRET) spectrometry is a method for determining the quaternary structure of protein oligomers from distributions of FRET efficiencies that are drawn from pixels of fluorescence images of cells expressing the proteins of interest. FRET spectrometry protocols currently rely on obtaining spectrally resolved fluorescence data from intensity-based experiments. Another imaging method, fluorescence lifetime imaging microscopy (FLIM), is a widely used alternative to compute FRET efficiencies for each pixel in an image from the reduction of the fluorescence lifetime of the donors caused by FRET. In FLIM studies of oligomers with different proportions of donors and acceptors, the donor lifetimes may be obtained by fitting the temporally resolved fluorescence decay data with a predetermined number of exponential decay curves. However, this requires knowledge of the number and the relative arrangement of the fluorescent proteins in the sample, which is precisely the goal of FRET spectrometry, thus creating a conundrum that has prevented users of FLIM instruments from performing FRET spectrometry. Here, we describe an attempt to implement FRET spectrometry on temporally resolved fluorescence microscopes by using an integration-based method of computing the FRET efficiency from fluorescence decay curves. This method, which we dubbed time-integrated FRET (or tiFRET), was tested on oligomeric fluorescent protein constructs expressed in the cytoplasm of living cells. The present results show that tiFRET is a promising way of implementing FRET spectrometry and suggest potential instrument adjustments for increasing accuracy and resolution in this kind of study.more » « less
-
Abstract Previous studies of the N-terminal PDZ tandem from PSD-95 produced divergent models and failed to identify interdomain contacts stabilizing the structure. We used ensemble and single-molecule FRET along with replica-exchange molecular dynamics to fully characterize the energy landscape. Simulations and experiments identified two conformations: an open-like conformation with a small contact interface stabilized by salt bridges, and a closed-like conformation with a larger contact interface stabilized by surface-exposed hydrophobic residues. Both interfaces were confirmed experimentally. Proximity of interdomain contacts to the binding pockets may explain the observed coupling between conformation and binding. The low-energy barrier between conformations allows submillisecond dynamics, which were time-averaged in previous NMR and FRET studies. Moreover, the small contact interfaces were likely overridden by lattice contacts as crystal structures were rarely sampled in simulations. Our hybrid approach can identify transient interdomain interactions, which are abundant in multidomain proteins yet often obscured by dynamic averaging.more » « less
-
Mechanoactive proteins are essential for a myriad of physiological and pathological processes. Guided by the advances in single-molecule force spectroscopy (SMFS), we have reached a molecular-level understanding of how mechanoactive proteins sense and respond to mechanical forces. However, even SMFS has its limitations, including the lack of detailed structural information during force-loading experiments. That is where molecular dynamics (MD) methods shine, bringing atomistic details with femtosecond time-resolution. However, MD heavily relies on the availability of high-resolution structural data, which is not available for most proteins. For instance, the Protein Data Bank currently has 192K structures deposited, against 231M protein sequences available on Uniprot. But many are betting that this gap might become much smaller soon. Over the past year, the AI-based AlphaFold created a buzz on the structural biology field by being able to predict near-native protein folds from their sequences. For some, AlphaFold is causing the merge of structural biology with bioinformatics. Here, using an in silico SMFS approach pioneered by our group, we investigate how reliable AlphaFold structure predictions are to investigate mechanical properties of Staphylococcus bacteria adhesins proteins. Our results show that AlphaFold produce extremally reliable protein folds, but in many cases is unable to predict high-resolution protein complexes accurately. Nonetheless, the results show that AlphaFold can revolutionize the investigation of these proteins, particularly by allowing high-throughput scanning of protein structures. Meanwhile, we show that the AlphaFold results need to be validated and should not be employed blindly, with the risk of obtaining an erroneous protein mechanism.more » « less
-
Abstract Many proteins are composed of several domains that pack together into a complex tertiary structure. Multidomain proteins can be challenging for protein structure modeling, particularly those for which templates can be found for individual domains but not for the entire sequence. In such cases, homology modeling can generate high quality models of the domains but not for the orientations between domains. Small‐angle X‐ray scattering (SAXS) reports the structural properties of entire proteins and has the potential for guiding homology modeling of multidomain proteins. In this article, we describe a novel multidomain protein assembly modeling method, SAXSDom that integrates experimental knowledge from SAXS with probabilistic Input‐Output Hidden Markov model to assemble the structures of individual domains together. Four SAXS‐based scoring functions were developed and tested, and the method was evaluated on multidomain proteins from two public datasets. Incorporation of SAXS information improved the accuracy of domain assembly for 40 out of 46 critical assessment of protein structure prediction multidomain protein targets and 45 out of 73 multidomain protein targets from the ab initio domain assembly dataset. The results demonstrate that SAXS data can provide useful information to improve the accuracy of domain‐domain assembly. The source code and tool packages are available athttps://github.com/jianlin-cheng/SAXSDom.more » « less
An official website of the United States government

