skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hydrophobic amine-based binary mixtures of active pharmaceutical and food grade ingredients: characterization and application in indium extraction from aqueous hydrochloric acid media
The wide spread use of hazardous and expensive solvents for the liquid–liquid extraction (LLE) of critical metals has been a growing source of waste in the metal refinement industry. We have developed and characterized room temperature liquid hydrophobic binary mixtures based on common pharmaceutical and food grade compounds as sustainable, cost effective alternatives to both ionic liquids and conventional solvents. Additionally, we introduce liquid mixtures with Proton Sponge® (1,8-bis(dimethylamino)naphthalene), one of the strongest known organic bases. These mixtures have been applied to the LLE of indium( iii ) ions from hydrochloric acid solutions, displaying an extraction efficiency greater than 99% in some systems. A systematic approach to identifying the underlying mechanism of extraction, in particular relating to the charge, solubility, and complexation of the indium species in the organic phase has been developed.  more » « less
Award ID(s):
1659847
PAR ID:
10215904
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Green Chemistry
Volume:
22
Issue:
20
ISSN:
1463-9262
Page Range / eLocation ID:
7047 to 7058
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Computational simulations of ionic liquid solutions have become a useful tool to investigate various physical, chemical and catalytic properties of systems involving these solvents. Classical molecular dynamics and hybrid quantum mechanical/molecular mechanical (QM/MM) calculations of IL systems have provided significant insights at the atomic level. Here, we present a review of the development and application of the multipolar and polarizable force field AMOEBA for ionic liquid systems, termed AMOEBA–IL. The parametrization approach for AMOEBA–IL relies on the reproduction of total quantum mechanical (QM) intermolecular interaction energies and QM energy decomposition analysis. This approach has been used to develop parameters for imidazolium– and pyrrolidinium–based ILs coupled with various inorganic anions. AMOEBA–IL has been used to investigate and predict the properties of a variety of systems including neat ILs and IL mixtures, water exchange reactions on lanthanide ions in IL mixtures, IL–based liquid–liquid extraction, and effects of ILs on an aniline protection reaction. 
    more » « less
  2. Lignin is unique among renewable biopolymers in having significant aromatic character, making it potentially attractive for a wide range of uses from coatings to carbon fibers. Recent research has shown that hot acetic acid (AcOH)–water mixtures can be used to recover “ultraclean” lignins of controlled molecular weight from Kraft lignins. A key feature of this discovery is the existence of a region of liquid–liquid equilibrium (LLE), with one phase being rich in the purified lignin and the other rich in solvent. Although visual methods can be used to determine the temperature at which solid lignin melts in the presence of AcOH–water mixtures to form LLE, the phase transition can be seen only at lower AcOH concentrations due to solvent opacity. Thus, an electrochemical impedance spectroscopy (EIS) technique was developed for measuring the phase-transition temperature of a softwood Kraft lignin in AcOH–water mixtures. In electrochemical cells, the resistance to double-layer charging ( i.e. , polarization resistance R p ) is related to the concentration and mobility of free ions in the electrolyte, both of which are affected by the phases present. When the lignin–AcOH–water mixture was heated through the phase transition, R P was found to be a strong function of temperature, with the maximum in R P corresponding to the transition temperature obtained from visual observation. As the system is heated, acetate ions associate with the solid lignin, forming a liquefied, lignin-rich phase. This association increases the overall impedance of the system, as mobile acetate ions are stripped from the solvent phase and thus are no longer available to adsorb on the polarizing electrode surfaces. The maximum in R P occurs once the new lignin-rich phase has completely formed, and no further association of the lignin polymer with AcOH is possible. Except at sub-ambient temperatures, the phase-transition temperature was a strong function of solvent composition, increasing linearly from 18 °C at 70/30 AcOH/water to 97 °C at 10/90 wt% AcOH/water. 
    more » « less
  3. null (Ed.)
    Water + elastin-like polypeptides (ELPs) exhibit a transition temperature below which the chains transform from collapsed to expanded states, reminiscent of the cold denaturation of proteins. This conformational change coincides with liquid–liquid phase separation. A statistical-thermodynamics theory is used to model the fluid-phase behavior of ELPs in aqueous solution and to extrapolate the behavior at ambient conditions over a range of pressures. At low pressures, closed-loop liquid–liquid equilibrium phase behavior is found, which is consistent with that of other hydrogen-bonding solvent + polymer mixtures. At pressures evocative of deep-sea conditions, liquid–liquid immiscibility bounded by two lower critical solution temperatures (LCSTs) is predicted. As pressure is increased further, the system exhibits two separate regions of closed-loop of liquid–liquid equilibrium (LLE). The observation of bimodal LCSTs and two re-entrant LLE regions herald a new type of binary global phase diagram: Type XII. At high-ELP concentrations the predicted phase diagram resembles a protein pressure denaturation diagram; possible “molten-globule”-like states are observed at low concentration. 
    more » « less
  4. Anions play an important role in our life, from storing our genetic code on the polyanion DNA, to being the active ingredient in agricultural fertilizers and other industrial processes. Consequently, chemists have been designing systems that can sense anionic species through a variety of methods, such as unimolecular chromophores or sensor arrays. Nonetheless, most existing sensing approaches still have some drawbacks, particularly related to obtaining adequate selectivity and achieving sensing of anions in aqueous environments. In this manuscript, we report a liquid-liquid extraction (LLE)-based sensing approach that allows the conversion of non-selective optical anion sensors that only work in organic media, into selective sensing systems that allow detection of anions in water. We tested this approach on deprotonation-based anion sensors (alizarin, naphthol AS, 4-nitrophenol, BI-Lawsone, and chromophore 1) and hydrogen bonding-based anion sensors (1,2-diaminoanthraquinone and 4-nitro-1,2-phenylenediamine). In general, the deprotonation-based sensors could be converted from a non-selective sensor for basic anions (NCO¯, H2PO4¯, AcO¯ and F¯) to a selective sensing system for NCO¯ with the aid of carefully chosen tetraalkylammonium salts as extracting agents. On the other hand, the hydrogen-bonding based sensors could be converted to a selective sensing system for the hydrophobic anion ClO4¯ using similar tetraalkylammonium salts. 
    more » « less
  5. Biomass burning organic aerosol (BBOA) is one of the largest sources of organics in the atmosphere. Mineral dust and biomass burning smoke frequently co-exist in the same atmospheric environment. Common biomass burning compounds, such as dihydroxybenzenes and their derivatives, are known to produce light-absorbing, water-insoluble polymeric particles upon reaction with soluble Fe( iii ) under conditions characteristic of aerosol liquid water. However, such reactions have not been tested in realistic mixtures of BBOA compounds. In this study, model organic aerosol (OA), meant to replicate BBOA from smoldering fires, was generated through the pyrolysis of Canary Island pine needles in a tube furnace at 300, 400, 500, 600, 700, and 800 °C in nitrogen gas, and the water-soluble fractions were reacted with iron chloride under dark, acidic conditions. We utilized spectrophotometry to monitor the reaction progress. For OA samples produced at lower temperatures (300 and 400 °C), particles (P300 and P400) formed in solution, were syringe filtered, and extracted in organic solvents. Analysis was conducted with ultrahigh pressure liquid chromatography coupled to a photodiode array spectrophotometer and a high-resolution mass spectrometer (UHPLC-PDA-HRMS). For OA samples formed at higher pyrolysis temperatures (500–800 °C), water-insoluble, black particles (P500–800) formed in solution. In contrast to P300 and P400, P500–800 were not soluble in common solvents. Scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS) and transmission electron microscopy (TEM) were used to image P600 and determine bulk elemental composition. Electron microscopy revealed that P600 had fractal morphology, reminiscent of soot particles, and contained no detectable iron. These results suggest that light-absorbing aerosol particles can be produced from Fe( iii )-catalyzed reactions in aging BBOA plumes produced from smoldering combustion in the absence of any photochemistry. This result has important implications for understanding the direct and indirect effects of aged BBOA on climate. 
    more » « less