skip to main content


Title: Experimental identification and in silico prediction of bacterivory in green algae
Abstract

While algal phago-mixotrophs play a major role in aquatic microbial food webs, their diversity remains poorly understood. Recent studies have indicated several species of prasinophytes, early diverging green algae, to be able to consume bacteria for nutrition. To further explore the occurrence of phago-mixotrophy in green algae, we conducted feeding experiments with live fluorescently labeled bacteria stained with CellTracker Green CMFDA, heat-killed bacteria stained with 5-(4,6-dichlorotriazin-2-yl) aminofluorescein (DTAF), and magnetic beads. Feeding was detected via microscopy and/or flow cytometry in five strains of prasinophytes when provided with live bacteria: Pterosperma cristatum NIES626, Pyramimonas parkeae CCMP726, Pyramimonas parkeae NIES254, Nephroselmis pyriformis RCC618, and Dolichomastix tenuilepis CCMP3274. No feeding was detected when heat-killed bacteria or magnetic beads were provided, suggesting a strong preference for live prey in the strains tested. In parallel to experimental assays, green algal bacterivory was investigated using a gene-based prediction model. The predictions agreed with the experimental results and suggested bacterivory potential in additional green algae. Our observations underline the likelihood of widespread occurrence of phago-mixotrophy among green algae, while additionally highlighting potential biases introduced when using prey proxy to evaluate bacterial ingestion by algal cells.

 
more » « less
Award ID(s):
1458070
NSF-PAR ID:
10216000
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
The ISME Journal
Volume:
15
Issue:
7
ISSN:
1751-7362
Format(s):
Medium: X Size: p. 1987-2000
Size(s):
["p. 1987-2000"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Tropical environments with unique abiotic and biotic factors—such as salt ponds, mangroves, and coral reefs—are often in close proximity. The heterogeneity of these environments is reflected in community shifts over short distances, resulting in high biodiversity. While phytoplankton assemblages physically associated with corals, particularly their symbionts, are well studied, less is known about phytoplankton diversity across tropical aquatic environments. We assess shifts in phytoplankton community composition along inshore to offshore gradients by sequencing and analyzing 16S rRNA gene amplicons using primers targeting the V1-V2 region that capture plastids from eukaryotic phytoplankton and cyanobacteria, as well as heterotrophic bacteria. Microbial alpha diversity computed from 16S V1-V2 amplicon sequence variant (ASV) data from 282 samples collected in and around Curaçao, in the Southern Caribbean Sea, varied more within the dynamic salt ponds, salterns, and mangroves, compared to the seemingly stable above-reef, off-reef, and open sea environments. Among eukaryotic phytoplankton, stramenopiles often exhibited the highest relative abundances in mangrove, above-reef, off-reef, and open sea environments, where cyanobacteria also showed high relative abundances. Within stramenopiles, diatom amplicons dominated in salt ponds and mangroves, while dictyochophytes and pelagophytes prevailed above reefs and offshore. Green algae and cryptophytes were also present, and the former exhibited transitions following the gradient from inland to offshore. Chlorophytes and prasinophyte Class IV dominated in salt ponds, while prasinophyte Class II, including Micromonas commoda and Ostreococcus Clade OII, had the highest relative abundances of green algae in mangroves, above-reef, off-reef, and the open sea. To improve Class II prasinophyte classification, we sequenced 18S rRNA gene amplicons from the V4 region in 41 samples which were used to interrelate plastid-based results with information on uncultured prasinophyte species from prior 18S rRNA gene-based studies. This highlighted the presence of newly described Ostreococcus bengalensis and two Micromonas candidate species. Network analyses identified co-occurrence patterns between individual phytoplankton groups, including cyanobacteria, and heterotrophic bacteria. Our study reveals multiple uncultured and novel lineages within green algae and dictyochophytes in tropical marine habitats. Collectively, the algal diversity patterns and potential co-occurrence relationships observed in connection to physicochemical and spatial influences help provide a baseline against which future change can be assessed. 
    more » « less
  2. Prasinophytes form a paraphyletic assemblage of early diverging green algae, which have the potential to reveal the traits of the last common ancestor of the main two green lineages: (i) chlorophyte algae and (ii) streptophyte algae. Understanding the genetic composition of prasinophyte algae is fundamental to understanding the diversification and evolutionary processes that may have occurred in both green lineages. In this study, we sequenced the chloroplast genome ofPyramimonas parkeaeNIES254 and compared it with that ofP. parkeaeCCMP726, the only other fully sequencedP. parkeaechloroplast genome. The results revealed thatP. parkeaechloroplast genomes are surprisingly variable. The chloroplast genome ofNIES254 was larger than that ofCCMP726 by 3,204 bp, theNIES254 large single copy was 288 bp longer, the small single copy was 5,088 bp longer, and theIRwas 1,086 bp shorter than that ofCCMP726. Similarity values of the two strains were almost zero in four large hot spot regions. Finally, the strains differed in copy number for three protein‐coding genes:ycf20,psaC, andndhE. Phylogenetic analyses using 16S and 18SrDNAandrbcLsequences resolved a clade consisting of these twoP. parkeaestrains and a clade consisting of these plus otherPyramimonasisolates. These results are consistent with past studies indicating that prasinophyte chloroplast genomes display a higher level of variation than is commonly found among land plants. Consequently, prasinophyte chloroplast genomes may be less useful for inferring the early history of Viridiplantae than has been the case for land plant diversification.

     
    more » « less
  3. ABSTRACT Snow algae can form large-scale blooms across the snowpack surface and near-surface environments. These pigmented blooms can decrease snow albedo and increase local melt rates, and they may impact the global heat budget and water cycle. Yet, the underlying causes for the geospatial occurrence of these blooms remain unconstrained. One possible factor contributing to snow algal blooms is the presence of mineral dust as a micronutrient source. We investigated the bioavailability of iron (Fe)-bearing minerals, including forsterite (Fo 90 , Mg 1.8 Fe 0.2 SiO 4 ), goethite, smectite, and pyrite as Fe sources for a Chloromonas brevispina -bacterial coculture through laboratory-based experimentation. Fo 90 was capable of stimulating snow algal growth and increased the algal growth rate in otherwise Fe-depleted cocultures. Fo 90 -bearing systems also exhibited a decrease in the ratio of bacteria to algae compared to those of Fe-depleted conditions, suggesting a shift in microbial community structure. The C. brevispina coculture also increased the rate of Fo 90 dissolution relative to that of an abiotic control. Analysis of 16S rRNA genes in the coculture identified Gammaproteobacteria , Betaproteobacteria , and Sphingobacteria , all of which are commonly found in snow and ice environments. Archaea were not detected. Collimonas and Pseudomonas , which are known to enhance mineral weathering rates, comprised two of the top eight (>1%) operational taxonomic units (OTUs). These data provide unequivocal evidence that mineral dust can support elevated snow algal growth under otherwise Fe-depleted growth conditions and that snow algal microbial communities can enhance mineral dissolution under these conditions. IMPORTANCE Fe, a key micronutrient for photosynthetic growth, is necessary to support the formation of high-density snow algal blooms. The laboratory experiments described herein allow for a systematic investigation of the interactions of snow algae, bacteria, and minerals and their ability to mobilize and uptake mineral-bound Fe. Results provide unequivocal and comprehensive evidence that mineral-bound Fe in Fe-bearing Fo 90 was bioavailable to Chloromonas brevispina snow algae within an algal-bacterial coculture. This evidence includes (i) an observed increase in snow algal density and growth rate, (ii) decreased ratios of bacteria to algae in Fo 90 -containing cultures relative to those of cultures grown under similarly Fe-depleted conditions with no mineral-bound Fe present, and (iii) increased Fo 90 dissolution rates in the presence of algal-bacterial cocultures relative to those of abiotic mineral controls. These results have important implications for the role of mineral dust in supplying micronutrients to the snow microbiome, which may help support dense snow algal blooms capable of lowering snow albedo and increasing snow melt rates on regional, and possibly global, scales. 
    more » « less
  4. Abstract

    In streams, unionoid mussels and fish form aggregations that exert bottom‐up and top‐down effects on food webs, but the magnitude and spatial extent of their effects are controlled by species traits. Sedentary mussels live burrowed in the sediment in patchily distributed dense aggregations (mussel beds) where they filter seston and provide a local, relatively constant nutrient subsidy. In contrast, fish move on and off mussel beds, and thus comprise a transient nutrient subsidy.

    We asked how overlap between fish and mussels influences nutrient recycling and resource distribution in streams. We conducted an 8‐week study in experimental streams where we created mussel beds (comprised of two species,Actinonaias ligamentinaandAmblema plicata), manipulated the occurrence of a grazing minnow (Campostoma anomalum), and tracked nutrient (nitrogen and phosphorus) and resource (algae, detritus, and chironomids) abundance up and downstream of the mussel beds.

    In general, neither consumer had strong effects on the concentration or spatial distribution of nutrients. Water turnover time in our experimental streams may have diluted fish and mussel nutrient excretion effects, making it difficult to detect spatial patterns during a given sampling period.

    Fish controlled the abundance and productivity of algae. In treatments without fish, large mats of filamentous algae formed early in the experiment. These algae senesced, decomposed, and were not replaced. When fish were present, algae consisted of attached biofilms with consistent biomass and spatial distribution over time.

    Although previous work has shown that mussels can have strong, seasonal bottom‐up effects on both primary and secondary production, our results suggested that adding grazing mobile fishes, led to a more consistent and homogenous supply of algal resources. Because mussels rarely occur in the absence of fish, considering their combined influence on ecosystem dynamics is likely to be important.

     
    more » « less
  5. Kormas, Konstantinos Aristomenis (Ed.)
    ABSTRACT Corals owe their ecological success to their symbiotic relationship with dinoflagellate algae (family Symbiodiniaceae). While the negative effects of heat stress on this symbiosis are well studied, how heat stress affects the onset of symbiosis and symbiont specificity is less explored. In this work, we used the model sea anemone, Exaiptasia diaphana (commonly referred to as Aiptasia), and its native symbiont, Breviolum minutum , to study the effects of heat stress on the colonization of Aiptasia by algae and the algal cell-surface glycome. Heat stress caused a decrease in the colonization of Aiptasia by algae that were not due to confounding variables such as algal motility or oxidative stress. With mass spectrometric analysis and lectin staining, a thermally induced enrichment of glycans previously found to be associated with free-living strains of algae (high-mannoside glycans) and a concomitant reduction in glycans putatively associated with symbiotic strains of algae (galactosylated glycans) were identified. Differential enrichment of specific sialic acid glycans was also identified, although their role in this symbiosis remains unclear. We also discuss the methods used to analyze the cell-surface glycome of algae, evaluate current limitations, and provide suggestions for future work in algal-coral glycobiology. Overall, this study provided insight into how stress may affect the symbiosis between cnidarians and their algal symbionts by altering the glycome of the symbiodinian partner. IMPORTANCE Coral reefs are under threat from global climate change. Their decline is mainly caused by the fragility of their symbiotic relationship with dinoflagellate algae which they rely upon for their ecological success. To better understand coral biology, researchers used the sea anemone, Aiptasia, a model system for the study of coral-algal symbiosis, and characterized how heat stress can alter the algae's ability to communicate to the coral host. This study found that heat stress caused a decline in algal colonization success and impacted the cell surface molecules of the algae such that it became more like that of nonsymbiotic species of algae. This work adds to our understanding of the molecular signals involved in coral-algal symbiosis and how it breaks down during heat stress. 
    more » « less