Abstract The dynamics of marine systems at decadal scales are notoriously hard to predict—hence references to this timescale as the “grey zone” for ocean prediction. Nevertheless, decadal-scale prediction is a rapidly developing field with an increasing number of applications to help guide ocean stewardship and sustainable use of marine environments. Such predictions can provide industry and managers with information more suited to support planning and management over strategic timeframes, as compared to seasonal forecasts or long-term (century-scale) predictions. The most significant advances in capability for decadal-scale prediction over recent years have been for ocean physics and biogeochemistry, with some notable advances in ecological prediction skill. In this paper, we argue that the process of “lighting the grey zone” by providing improved predictions at decadal scales should also focus on including human dimensions in prediction systems to better meet the needs and priorities of end users. Our paper reviews information needs for decision-making at decadal scales and assesses current capabilities for meeting these needs. We identify key gaps in current capabilities, including the particular challenge of integrating human elements into decadal prediction systems. We then suggest approaches for overcoming these challenges and gaps, highlighting the important role of co-production of tools and scenarios, to build trust and ensure uptake with end users of decadal prediction systems. We also highlight opportunities for combining narratives and quantitative predictions to better incorporate the human dimension in future efforts to light the grey zone of decadal-scale prediction.
more »
« less
Applications, challenges, and needs for employing synthetic biology beyond the lab
Abstract Synthetic biology holds great promise for addressing global needs. However, most current developments are not immediately translatable to ‘outside-the-lab’ scenarios that differ from controlled laboratory settings. Challenges include enabling long-term storage stability as well as operating in resource-limited and off-the-grid scenarios using autonomous function. Here we analyze recent advances in developing synthetic biological platforms for outside-the-lab scenarios with a focus on three major application spaces: bioproduction, biosensing, and closed-loop therapeutic and probiotic delivery. Across the Perspective, we highlight recent advances, areas for further development, possibilities for future applications, and the needs for innovation at the interface of other disciplines.
more »
« less
- Award ID(s):
- 2029249
- PAR ID:
- 10216080
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 12
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
BackgroundLab manuals help researchers and students share a common understanding of the rules, guidelines, and expectations related to being involved with a research laboratory. However, no formal guidelines direct the creation of lab manuals in psychology. ObjectiveIn this study, we conducted qualitative analyses of 10 psychology lab manuals to provide some broad guidelines for crafting a lab manual that would improve the research experience for undergraduate students. MethodTaking an inductive approach, a team of researchers created codes from the contents of the manuals, and then derived themes from those codes. ResultsThemes included lab philosophy and direction, expectations and roles in the lab, communication inside and outside the lab, ethics, preparing for research, conducting research, presenting research, networking, and benefits of undergraduate research. ConclusionWe defined and provided specific examples of each theme for consideration by educators and discussed limitations of our approach. Teaching ImplicationsUltimately, these themes could serve as a modest outline from which teacher-scholars can create their lab manuals from scratch or to revise/expand current manuals.more » « less
-
Recent advancements in cloud computing have driven rapid development in data-intensive smart city applications by providing near real time processing and storage scalability. This has resulted in efficient centralized route planning services such as Google Maps, upon which millions of users rely. Route planning algorithms have progressed in line with the cloud environments in which they run. Current state of the art solutions assume a shared memory model, hence deployment is limited to multiprocessing environments in data centers. By centralizing these services, latency has become the limiting parameter in the technologies of the future, such as autonomous cars. Additionally, these services require access to outside networks, raising availability concerns in disaster scenarios. Therefore, this paper provides a decentralized route planning approach for private fog networks. We leverage recent advances in federated learning to collaboratively learn shared prediction models online and investigate our approach with a simulated case study from a mid-size U.S. city.more » « less
-
Abstract High‐performance polymers have been concomitant with advanced technology for half a century. With the advancement of synthetic chemistry, the recent development of high‐performance polymers has provided superior properties and enabled wide applications. This article reviews recent research progress in aromatic high‐performance polymers. Particularly, we focus on the synthesis and processing of polyimides, as well as the application in gas separation membranes. We begin with a brief introduction to highlight important history and physiochemical characteristics of polyimides. Then, we review the various synthesis methods, followed by recent advances for improving processability. Finally, we evaluate the use of high‐performance polymers in gas separation membranes with focus given to the key issues of plasticization and aging. Overall, the information presented herein provides an up‐to‐date overview of high‐performance polymers, polyimides particularly, and serves as a guide for further research involving the applications in membrane technologies.more » « less
-
This article examines recent advances in the field of antiferromagnetic spintronics from the perspective of potential device realization and applications. We discuss advances in the electrical control of antiferromagnetic order by current-induced spin–orbit torques, particularly in antiferromagnetic thin films interfaced with heavy metals. We also review possible scenarios for using voltage-controlled magnetic anisotropy as a more efficient mechanism to control antiferromagnetic order in thin films with perpendicular magnetic anisotropy. Next, we discuss the problem of electrical detection (i.e., readout) of antiferromagnetic order and highlight recent experimental advances in realizing anomalous Hall and tunneling magnetoresistance effects in thin films and tunnel junctions, respectively, which are based on noncollinear antiferromagnets. Understanding the domain structure and dynamics of antiferromagnetic materials is essential for engineering their properties for applications. For this reason, we then provide an overview of imaging techniques as well as micromagnetic simulation approaches for antiferromagnets. Finally, we present a perspective on potential applications of antiferromagnets for magnetic memory devices, terahertz sources, and detectors.more » « less
An official website of the United States government
