Abstract The Drake Passage Time‐series (DPT) is used to quantify the spatial and seasonal variability of historically undersampled, biogeochemically relevant properties across the Drake Passage. From 2004–2017, discrete ship‐based observations of surface macronutrients (silicate, nitrate, and phosphate), temperature, and salinity have been collected 5–8 times per year as part of the DPT program. Using the DPT and Antarctic Circumpolar Current (ACC) front locations derived from concurrent expendable bathythermograph data, the distinct physical and biogeochemical characteristics of ACC frontal zones are characterized. Biogeochemical‐Argo floats in the region confirm that the near‐surface sampling scheme of the DPT robustly captures mixed‐layer biogeochemistry. While macronutrient concentrations consistently increase toward the Antarctic continent, their meridional distribution, variability, and biogeochemical gradients are unique across physical ACC fronts, suggesting a combination of physical and biological processes controlling nutrient availability and nutrient front location. The Polar Front is associated with the northern expression of the Silicate Front, marking the biogeographically relevant location between silicate‐poor and silicate‐rich waters. South of the northern Silicate Front, the silicate‐to‐nitrate ratio increases, with the sharpest gradient in silicate associated with the Southern ACC Front (i.e., the southern expression of the Silicate Front). Nutrient cycling is an important control on variability in the surface ocean partial pressure of carbon dioxide (pCO2). The robust characterization of the spatiotemporal variability of nutrients presented here highlights the utility of biogeochemical time series for diagnosing and potentially reducing biases in modeling Southern Ocean pCO2variability, and by inference, air‐sea CO2flux.
more »
« less
Upper-Ocean Eddy Heat Flux across the Antarctic Circumpolar Current in Drake Passage from Observations: Time-Mean and Seasonal Variability
Abstract Eddy heat flux plays a fundamental role in the Southern Ocean meridional overturning circulation, providing the only mechanism for poleward heat transport above the topography and below the Ekman layer at the latitudes of Drake Passage. Models and observations identify Drake Passage as one of a handful of hot spots in the Southern Ocean where eddy heat transport across the Antarctic Circumpolar Current (ACC) is enhanced. Quantifying this transport, however, together with its spatial distribution and temporal variability, remains an open question. This study quantifies eddy heat flux as a function of ACC streamlines using a unique 20-yr time series of upper-ocean temperature and velocity transects with unprecedented horizontal resolution. Eddy heat flux is calculated using both time-mean and time-varying streamlines to isolate the dynamically important across-ACC heat flux component. The time-varying streamlines provide the best estimate of the across-ACC component because they track the shifting and meandering of the ACC fronts. The depth-integrated (0–900 m) across-stream eddy heat flux is maximum poleward in the south flank of the Subantarctic Front (−0.10 ± 0.05 GW m −1 ) and decreases toward the south, becoming statistically insignificant in the Polar Front, indicating heat convergence south of the Subantarctic Front. The time series provides an uncommon opportunity to explore the seasonal cycle of eddy heat flux. Poleward eddy heat flux in the Polar Front Zone is enhanced during austral autumn–winter, suggesting a seasonal variation in eddy-driven upwelling and thus the meridional overturning circulation.
more »
« less
- Award ID(s):
- 1755529
- PAR ID:
- 10216130
- Date Published:
- Journal Name:
- Journal of Physical Oceanography
- Volume:
- 50
- Issue:
- 9
- ISSN:
- 0022-3670
- Page Range / eLocation ID:
- 2507 to 2527
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)The Antarctic Circumpolar Current (ACC) is the world’s strongest zonal current system that connects all three major ocean basins of the global ocean and therefore integrates and responds to global climate variability. Its flow is largely driven by strong westerly winds and constricted to its narrowest extent in the Drake Passage. Transport of fresh and cold surface and intermediate water masses through the Drake Passage (cold-water route) strongly affect the Atlantic Meridional Overturning Circulation (AMOC) together with the inflow of Indian Ocean water masses (warm-water route). Both oceanographic corridors are critical for the South Atlantic contribution to AMOC changes. In contrast to the Atlantic and Indian sectors of the ACC, and with the exception of drill cores from the Antarctic continental margin and off New Zealand, deep-sea drilling records of the Pacific sector of the ACC lack information on its Cenozoic paleoceanography. To advance our knowledge and understanding of Plio-Pleistocene atmosphere-ocean-cryosphere dynamics in the Pacific and their implications for regional and global climate and atmospheric CO2, International Ocean Discovery Program Expedition 383 proposes the recovery of 180 to 500 m long high-resolution Plio-Pleistocene sediment sequences at (1) three primary sites located on a cross-frontal transect in the central South Pacific (CSP) between the modern Polar Front (Site CSP-3A) and the Subantarctic Zone (Sites CSP-1A and CSP-2B), (2) two sites (CHI-1C and CHI-4B) at the Chilean margin, and (3) one site from the pelagic eastern South Pacific (ESP; Site ESP-1A) close to the entrance to the Drake Passage. The planned sites represent a depth transect from ~1100 m at the Chilean margin (Site CHI-4B) to >5000 m in the Bellingshausen Sea (Site CSP-3A) that will allow investigation of Plio-Pleistocene changes in the vertical structure of the ACC—a key issue for understanding the role of the Southern Ocean in the global carbon cycle. All of the six primary and eight alternate sites were surveyed with seismic lines in 2009–2010 and most recently in 2016. The sites are located at latitudes and water depths where sediments will allow the application of a wide range of siliciclastic, carbonate, and opal-based proxies to address our objectives of reconstructing, with unprecedented stratigraphic detail, surface to deep ocean variations and their relation to atmosphere and cryosphere changes through stadial-to-interstadial, glacial-to-interglacial, and warmer-than-present time intervals.more » « less
-
The Antarctic Circumpolar Current (ACC) is the world’s strongest zonal current system that connects all three major ocean basins of the global ocean and therefore integrates and responds to global climate variability. Its flow is largely driven by strong westerly winds and constricted to its narrowest extent in the Drake Passage. Transport of fresh and cold surface and intermediate water masses through the Drake Passage (cold-water route) strongly affect the Atlantic Meridional Overturning Circulation (AMOC) together with the inflow of Indian Ocean water masses (warm-water route). Both oceanographic corridors are critical for the South Atlantic contribution to AMOC changes. In contrast to the Atlantic and Indian sectors of the ACC, and with the exception of drill cores from the Antarctic continental margin and off New Zealand, deep-sea drilling records of the Pacific sector of the ACC lack information on its Cenozoic paleoceanography. To advance our knowledge and understanding of Plio-Pleistocene atmosphere-ocean-cryosphere dynamics in the Pacific and their implications for regional and global climate and atmospheric CO2, International Ocean Discovery Program Expedition 383 proposes the recovery of 180 to 500 m long high-resolution Plio-Pleistocene sediment sequences at (1) three primary sites located on a cross-frontal transect in the central South Pacific (CSP) between the modern Polar Front (Site CSP-3A) and the Subantarctic Zone (Sites CSP-1A and CSP-2B), (2) two sites (CHI-1C and CHI-4B) at the Chilean margin, and (3) one site from the pelagic eastern South Pacific (ESP; Site ESP-1A) close to the entrance to the Drake Passage. The planned sites represent a depth transect from ~1100 m at the Chilean margin (Site CHI-4B) to >5000 m in the Bellingshausen Sea (Site CSP-3A) that will allow investigation of Plio-Pleistocene changes in the vertical structure of the ACC—a key issue for understanding the role of the Southern Ocean in the global carbon cycle. All of the six primary and eight alternate sites were surveyed with seismic lines in 2009–2010 and most recently in 2016. The sites are located at latitudes and water depths where sediments will allow the application of a wide range of siliciclastic, carbonate, and opal-based proxies to address our objectives of reconstructing, with unprecedented stratigraphic detail, surface to deep ocean variations and their relation to atmosphere and cryosphere changes through stadial-to-interstadial, glacial-to-interglacial, and warmer-than-present time intervals.more » « less
-
null (Ed.)The Antarctic Circumpolar Current (ACC) is the world’s strongest zonal current system that connects all three major ocean basins of the global ocean and therefore integrates and responds to global climate variability. Its flow is largely driven by strong westerly winds and constricted to its narrowest extent in the Drake Passage. Transport of fresh and cold surface and intermediate water masses through the Drake Passage (cold-water route) strongly affects the Atlantic Meridional Overturning Circulation together with the inflow of Indian Ocean water masses (warm-water route). Both oceanographic corridors are critical for the South Atlantic contribution to Meridional Overturning Circulation changes. In contrast to the Atlantic and Indian sectors of the ACC, and with the exception of drill cores from the Antarctic continental margin and off New Zealand, the Pacific sector of the ACC lacks information on its Cenozoic paleoceanography from deep-sea drilling records. To advance our knowledge and understanding of Miocene to Holocene atmosphere-ocean-cryosphere dynamics in the Pacific and their implications for regional and global climate and atmospheric CO2, International Ocean Discovery Program (IODP) Expedition 383 recovered sedimentary sequences at (1) three sites located in the central South Pacific (U1539, U1540, and U1541), (2) two sites at the Chile margin (U1542 and U1544), and (3) one site from the pelagic eastern South Pacific (U1543) close to the entrance to the Drake Passage. Because of persistently stormy conditions and the resulting bad weather avoidance, we were not successful in recovering the originally planned Proposed Site CSP-3A in the central South Pacific in the Polar Frontal Zone. The drilled sediments at Sites U1541 and U1543 reach back to the late Miocene, and those at Site U1540 reach back to the early Pliocene. High sedimentary rate Pleistocene sedimentary sequences were drilled both in the central South Pacific (Site U1539) and along the Chile margin. Taken together, the sites represent a depth transect from ~1100 m at the Chile margin site (U1542) to ~4070 m in the central South Pacific (Site U1539) and allow investigation of changes in the vertical structure of the ACC, a key issue for understanding the role of the Southern Ocean in the global carbon cycle. The sites are located at latitudes and water depths where sediments will allow the application of a wide range of siliciclastic-, carbonate-, and opal-based proxies to address our objectives of reconstructing with unprecedented stratigraphic detail surface to deep-ocean variations and their relation to atmosphere and cryosphere changes through stadial to interstadial, glacial to interglacial, and warmer than present time intervals.more » « less
-
Abstract Cross-frontal exchange facilitated by mesoscale eddies in the lee of major topographic features of the Southern Ocean is fundamental to the global overturning circulation. Despite the outsize importance for meridional heat flux, we lack an accurate estimation of fluxes across the Antarctic Circumpolar Current (ACC) due to the challenges of observing mesoscale eddy fluctuations on the temporal and spatial scales required. Here, 12 years of Argo data are used to observe patterns of cross-frontal exchange in the Southeast Indian Ridge system, a relatively underobserved region, known to be a hotspot of exchange. Spice variance along ACC streamlines is used as a proxy for cross-frontal exchange. Elevated exchange is observed downstream of the ridge system in nearly every streamline and is particularly prominent in the core of the ACC. Notably, exchange peaks progressively downstream at each poleward streamline suggesting a systematic north-to-south handoff across nearly the full breadth of the ACC. Employing a mixing length framework, lateral stirring is parameterized as an eddy diffusivity on the isopycnal of peak exchange. We find a highly localized pattern of diffusivity, peaking between the crest and trough of the first standing meander in the lee of the ridge system. Spatially, this diffusivity pattern correlates with an along-stream increase in eddy kinetic energy. Along-stream vertical wavenumber spectra of spice anomaly profiles indicate that the vertical scales of intrusions, which are initially large (approximately 800 m), rapidly evolve downstream to smaller wavenumbers (100–300 m) presumably in response to intense vertical shear and filamentation.more » « less
An official website of the United States government

