The Drake Passage Time‐series (DPT) is used to quantify the spatial and seasonal variability of historically undersampled, biogeochemically relevant properties across the Drake Passage. From 2004–2017, discrete ship‐based observations of surface macronutrients (silicate, nitrate, and phosphate), temperature, and salinity have been collected 5–8 times per year as part of the DPT program. Using the DPT and Antarctic Circumpolar Current (ACC) front locations derived from concurrent expendable bathythermograph data, the distinct physical and biogeochemical characteristics of ACC frontal zones are characterized. Biogeochemical‐Argo floats in the region confirm that the near‐surface sampling scheme of the DPT robustly captures mixed‐layer biogeochemistry. While macronutrient concentrations consistently increase toward the Antarctic continent, their meridional distribution, variability, and biogeochemical gradients are unique across physical ACC fronts, suggesting a combination of physical and biological processes controlling nutrient availability and nutrient front location. The Polar Front is associated with the northern expression of the Silicate Front, marking the biogeographically relevant location between silicate‐poor and silicate‐rich waters. South of the northern Silicate Front, the silicate‐to‐nitrate ratio increases, with the sharpest gradient in silicate associated with the Southern ACC Front (i.e., the southern expression of the Silicate Front). Nutrient cycling is an important control on variability in the surface ocean partial pressure of carbon dioxide (pCO2). The robust characterization of the spatiotemporal variability of nutrients presented here highlights the utility of biogeochemical time series for diagnosing and potentially reducing biases in modeling Southern Ocean pCO2variability, and by inference, air‐sea CO2flux.
- Award ID(s):
- 1755529
- PAR ID:
- 10216130
- Date Published:
- Journal Name:
- Journal of Physical Oceanography
- Volume:
- 50
- Issue:
- 9
- ISSN:
- 0022-3670
- Page Range / eLocation ID:
- 2507 to 2527
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
null (Ed.)The Antarctic Circumpolar Current (ACC) is the world’s strongest zonal current system that connects all three major ocean basins of the global ocean and therefore integrates and responds to global climate variability. Its flow is largely driven by strong westerly winds and constricted to its narrowest extent in the Drake Passage. Transport of fresh and cold surface and intermediate water masses through the Drake Passage (cold-water route) strongly affects the Atlantic Meridional Overturning Circulation together with the inflow of Indian Ocean water masses (warm-water route). Both oceanographic corridors are critical for the South Atlantic contribution to Meridional Overturning Circulation changes. In contrast to the Atlantic and Indian sectors of the ACC, and with the exception of drill cores from the Antarctic continental margin and off New Zealand, the Pacific sector of the ACC lacks information on its Cenozoic paleoceanography from deep-sea drilling records. To advance our knowledge and understanding of Miocene to Holocene atmosphere-ocean-cryosphere dynamics in the Pacific and their implications for regional and global climate and atmospheric CO2, International Ocean Discovery Program (IODP) Expedition 383 recovered sedimentary sequences at (1) three sites located in the central South Pacific (U1539, U1540, and U1541), (2) two sites at the Chile margin (U1542 and U1544), and (3) one site from the pelagic eastern South Pacific (U1543) close to the entrance to the Drake Passage. Because of persistently stormy conditions and the resulting bad weather avoidance, we were not successful in recovering the originally planned Proposed Site CSP-3A in the central South Pacific in the Polar Frontal Zone. The drilled sediments at Sites U1541 and U1543 reach back to the late Miocene, and those at Site U1540 reach back to the early Pliocene. High sedimentary rate Pleistocene sedimentary sequences were drilled both in the central South Pacific (Site U1539) and along the Chile margin. Taken together, the sites represent a depth transect from ~1100 m at the Chile margin site (U1542) to ~4070 m in the central South Pacific (Site U1539) and allow investigation of changes in the vertical structure of the ACC, a key issue for understanding the role of the Southern Ocean in the global carbon cycle. The sites are located at latitudes and water depths where sediments will allow the application of a wide range of siliciclastic-, carbonate-, and opal-based proxies to address our objectives of reconstructing with unprecedented stratigraphic detail surface to deep-ocean variations and their relation to atmosphere and cryosphere changes through stadial to interstadial, glacial to interglacial, and warmer than present time intervals.more » « less
-
Abstract The subpolar gyres of the Southern Ocean form an important dynamical link between the Antarctic Circumpolar Current (ACC) and the coastline of Antarctica. Despite their key involvement in the production and export of bottom water and the poleward transport of oceanic heat, these gyres are rarely acknowledged in conceptual models of the Southern Ocean circulation, which tend to focus on the zonally averaged overturning across the ACC. To isolate the effect of these gyres on the regional circulation, we carried out a set of numerical simulations with idealized representations of the Weddell Sea sector in the Southern Ocean. A key result is that the zonally oriented submarine ridge along the northern periphery of the subpolar gyre plays a fundamental role in setting the stratification and circulation across the entire region. In addition to sharpening and strengthening the horizontal circulation of the gyre, the zonal ridge establishes a strong meridional density front that separates the weakly stratified subpolar gyre from the more stratified circumpolar flow. Critically, the formation of this front shifts the latitudinal outcrop position of certain deep isopycnals such that they experience different buoyancy forcing at the surface. Additionally, the zonal ridge modifies the mechanisms by which heat is transported poleward by the ocean, favoring heat transport by transient eddies while suppressing that by stationary eddies. This study highlights the need to characterize how bathymetry at the subpolar gyre–ACC boundary may constrain the transient response of the regional circulation to changes in surface forcing.
Significance Statement This study explores the impact of seafloor bathymetry on the dynamics of subpolar gyres in the Southern Ocean. The subpolar gyres are major circulation features that connect the Antarctic Circumpolar Current (ACC) and the coastline of Antarctica. This work provides deeper insight for how the submarine ridges that exist along the northern periphery of these gyres shape the vertical distribution of tracers and overturning circulation in these regions. These findings highlight an underappreciated yet fundamentally important topographical constraint on the three-dimensional cycling of heat and carbon in the Southern Ocean—processes that have far-reaching implications for the global climate. Future work should explore how the presence of these ridges affect the time-evolving response of the Southern Ocean to changes in surface conditions.
-
Abstract Since the inception of the international South Atlantic Meridional Overturning Circulation initiative in the 21st century, substantial advances have been made in observing and understanding the Southern Hemisphere component of the Atlantic Meridional Overturning Circulation (AMOC). Here we synthesize insights gained into overturning flows, interocean exchanges, and water mass distributions and pathways in the South Atlantic. The overturning circulation in the South Atlantic uniquely carries heat equatorward and exports freshwater poleward and consists of two strong overturning cells. Density and pressure gradients, winds, eddies, boundary currents, and interocean exchanges create an energetic circulation in the subtropical and tropical South Atlantic Ocean. The relative importance of these drivers varies with the observed latitude and time scale. AMOC, interocean exchanges, and climate changes drive ocean warming at all depths, upper ocean salinification, and freshening in the deep and abyssal ocean in the South Atlantic. Long-term sustained observations are critical to detect and understand these changes and their impacts.more » « less
-
Abstract Although the westerly winds that drive the Antarctic Circumpolar Current (ACC) have increased over the past several decades, the ACC response remains an open question. Here we use a 15-year time series of concurrent upper-ocean temperature, salinity, and ocean velocity with high spatial resolution across Drake Passage to analyze whether the net Drake Passage transport has accelerated in the last 15 years. We find that, although the net Drake Passage transport relative to 760 m shows insignificant acceleration, the net transport trend comprises compensating trends across the ACC frontal regions. Our results show an increase in the mesoscale eddy activity between the fronts consistent with buoyancy changes in the fronts and with an eddy saturation state. Furthermore, the increased eddy activity may play a role in redistributing momentum across the ACC frontal regions. The increase in eddy activity is expected to intensify the eddy-driven upwelling of deep warm waters around Antarctica, which has significant implications for ice-melting, sea level rise, and global climate.