skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 1755529

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Drake Passage is a key region for transport between the surface and interior ocean, but a mechanistic understanding of this exchange remains immature. Here, we present wintertime, submesoscale‐resolving hydrographic transects spanning the southern boundary of the Antarctic Circumpolar Current and the Polar Front (PF). Despite the strong surface wind and buoyancy forcing, a freshwater lens suppresses surface‐interior exchange south of the PF; ventilation is instead localized to the PF. Multiple lines of the analysis suggest submesoscale processes contribute to ventilation at the PF, including small‐scale, O(10 km), frontal structure in water mass properties below the mixed layer and modulation of a surface eddy diffusivity at sub‐50 km scales. These results show that ventilation is sensitive to both submesoscale properties near fronts and non‐local processes, for example, sea‐ice melt, that set stratification and mixed layer properties. This highlights the need for adaptive observing strategies to constrain Southern Ocean heat and carbon budgets. 
    more » « less
  2. Abstract Radiation and breaking of internal lee waves are thought to play a significant role in the energy and heat budget of the Southern Ocean. Open questions remain, however, regarding the amount of energy converted from the deep flows of the Antarctic Circumpolar Current (ACC) into lee waves and how much of this energy dissipates locally. This study estimated the linear lee‐wave energy radiation using a unique 4‐year time series of stratification and near‐bottom currents from an array of Current and Pressure measuring Inverted Echo Sounders (CPIES) spanning Drake Passage. Lee‐wave energy was calculated from two 2D anisotropic and one 1D isotropic abyssal hill topographies. Lee‐wave energy radiation from all three topographies was largest in the Polar Front Zone associated with strong deep meandering of the ACC fronts. Both baroclinic and barotropic instabilities appeared to modulate the conversion to lee waves in the Polar Front Zone. Fine structure temperature, salinity, and velocity profiles at the CPIES locations were used to estimate turbulent dissipation due to breaking internal waves by employing a finescale parameterization. High dissipation near the bottom was consistent with upward‐propagating, high‐frequency lee waves as found by earlier studies. In contrast to idealized numerical predictions of 50% local dissipation of lee‐wave energy, this study found less than 10% dissipated locally similar to some other studies. Improving the representation of the abyssal hills by accounting for anisotropy did not reduce the discrepancy between radiated lee‐wave energy and local dissipation. Instead, alternative fates must be considered for the excess radiated lee‐wave energy. 
    more » « less
  3. Abstract Since the inception of the international South Atlantic Meridional Overturning Circulation initiative in the 21st century, substantial advances have been made in observing and understanding the Southern Hemisphere component of the Atlantic Meridional Overturning Circulation (AMOC). Here we synthesize insights gained into overturning flows, interocean exchanges, and water mass distributions and pathways in the South Atlantic. The overturning circulation in the South Atlantic uniquely carries heat equatorward and exports freshwater poleward and consists of two strong overturning cells. Density and pressure gradients, winds, eddies, boundary currents, and interocean exchanges create an energetic circulation in the subtropical and tropical South Atlantic Ocean. The relative importance of these drivers varies with the observed latitude and time scale. AMOC, interocean exchanges, and climate changes drive ocean warming at all depths, upper ocean salinification, and freshening in the deep and abyssal ocean in the South Atlantic. Long-term sustained observations are critical to detect and understand these changes and their impacts. 
    more » « less
  4. null (Ed.)
    Abstract Eddy heat flux plays a fundamental role in the Southern Ocean meridional overturning circulation, providing the only mechanism for poleward heat transport above the topography and below the Ekman layer at the latitudes of Drake Passage. Models and observations identify Drake Passage as one of a handful of hot spots in the Southern Ocean where eddy heat transport across the Antarctic Circumpolar Current (ACC) is enhanced. Quantifying this transport, however, together with its spatial distribution and temporal variability, remains an open question. This study quantifies eddy heat flux as a function of ACC streamlines using a unique 20-yr time series of upper-ocean temperature and velocity transects with unprecedented horizontal resolution. Eddy heat flux is calculated using both time-mean and time-varying streamlines to isolate the dynamically important across-ACC heat flux component. The time-varying streamlines provide the best estimate of the across-ACC component because they track the shifting and meandering of the ACC fronts. The depth-integrated (0–900 m) across-stream eddy heat flux is maximum poleward in the south flank of the Subantarctic Front (−0.10 ± 0.05 GW m −1 ) and decreases toward the south, becoming statistically insignificant in the Polar Front, indicating heat convergence south of the Subantarctic Front. The time series provides an uncommon opportunity to explore the seasonal cycle of eddy heat flux. Poleward eddy heat flux in the Polar Front Zone is enhanced during austral autumn–winter, suggesting a seasonal variation in eddy-driven upwelling and thus the meridional overturning circulation. 
    more » « less