skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Doppelgängers: Bijections of Plane Partitions
Abstract We say two posets are doppelgängers if they have the same number of P-partitions of each height k. We give a uniform framework for bijective proofs that posets are doppelgängers by synthesizing K-theoretic Schubert calculus techniques of H. Thomas and A. Yong with M. Haiman’s rectification bijection and an observation of R. Proctor. Geometrically, these bijections reflect the rational equivalence of certain subvarieties of minuscule flag manifolds. As a special case, we provide the 1st bijective proof of a 1983 theorem of R. Proctor—that plane partitions of height k in a rectangle are equinumerous with plane partitions of height k in a shifted trapezoid.  more » « less
Award ID(s):
1703696
PAR ID:
10216217
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
International Mathematics Research Notices
Volume:
2020
Issue:
2
ISSN:
1073-7928
Page Range / eLocation ID:
487 to 540
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract For a Weyl group W of rank r , the W -Catalan number is the number of antichains of the poset of positive roots, and the W -Narayana numbers refine the W -Catalan number by keeping track of the cardinalities of these antichains. The W -Narayana numbers are symmetric – that is, the number of antichains of cardinality k is the same as the number of cardinality $r-k$ . However, this symmetry is far from obvious. Panyushev posed the problem of defining an involution on root poset antichains that exhibits the symmetry of the W -Narayana numbers. Rowmotion and rowvacuation are two related operators, defined as compositions of toggles, that give a dihedral action on the set of antichains of any ranked poset. Rowmotion acting on root posets has been the subject of a significant amount of research in the recent past. We prove that for the root posets of classical types, rowvacuation is Panyushev’s desired involution. 
    more » « less
  2. Topological Data Analysis (TDA) studies the “shape” of data. A common topological descriptor is the persistence diagram, which encodes topological features in a topological space at different scales. Turner, Mukherjee, and Boyer showed that one can reconstruct a simplicial complex embedded in R^3 using persistence diagrams generated from all possible height filtrations (an uncountably infinite number of directions). In this paper, we present an algorithm for reconstructing plane graphs K = (V, E) in R^2, i.e., a planar graph with vertices in general position and a straight-line embedding, from a quadratic number height filtrations and their respective persistence diagrams. 
    more » « less
  3. Topological Data Analysis (TDA) studies the shape of data. A common topological descriptor is the persistence diagram, which encodes topological features in a topological space at different scales. Turner, Mukeherjee, and Boyer showed that one can reconstruct a simplicial complex embedded in R^3 using persistence diagrams generated from all possible height filtrations (an uncountably infinite number of directions). In this paper, we present an algorithm for reconstructing plane graphs K=(V,E) in R^2 , i.e., a planar graph with vertices in general position and a straight-line embedding, from a quadratic number height filtrations and their respective persistence diagrams. 
    more » « less
  4. Let P be a set n points in a d-dimensional space. Tverberg theorem says that, if n is at least (k − 1)(d + 1), then P can be par- titioned into k sets whose convex hulls intersect. Partitions with this property are called Tverberg partitions. A partition has tolerance t if the partition remains a Tverberg partition after removal of any set of t points from P. A tolerant Tverberg partition exists in any dimensions provided that n is sufficiently large. Let N(d,k,t) be the smallest value of n such that tolerant Tverberg partitions exist for any set of n points in R d . Only few exact values of N(d,k,t) are known. In this paper, we study the problem of finding Radon partitions (Tver- berg partitions for k = 2) for a given set of points. We develop several algorithms and found new lower bounds for N(d,2,t). 
    more » « less
  5. null (Ed.)
    The jeu-de-taquin-based Littlewood-Richardson rule of H. Thomas and A. Yong (2009) for minuscule varieties has been extended in two orthogonal directions, either enriching the cohomology theory or else expanding the family of varieties considered. In one direction, A. Buch and M. Samuel (2016) developed a combinatorial theory of 'unique rectification targets' in minuscule posets to extend the Thomas-Yong rule from ordinary cohomology to $$K$$-theory. Separately, P.-E. Chaput and N. Perrin (2012) used the combinatorics of R. Proctor's '$$d$$-complete posets' to extend the Thomas-Yong rule from minuscule varieties to a broader class of Kac-Moody structure constants. We begin to address the unification of these theories. Our main result is the existence of unique rectification targets in a large class of $$d$$-complete posets. From this result, we obtain conjectural positive combinatorial formulas for certain $$K$$-theoretic Schubert structure constants in the Kac-Moody setting. 
    more » « less