skip to main content


Search for: All records

Award ID contains: 1703696

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract We introduce two new bases of the ring of polynomials and study their relations to known bases. The first basis is the quasi-Lascoux basis, which is simultaneously both a $K$ -theoretic deformation of the quasi-key basis and also a lift of the $K$ -analogue of the quasi-Schur basis from quasi-symmetric polynomials to general polynomials. We give positive expansions of this quasi-Lascoux basis into the glide and Lascoux atom bases, as well as a positive expansion of the Lascoux basis into the quasi-Lascoux basis. As a special case, these expansions give the first proof that the $K$ -analogues of quasi-Schur polynomials expand positively in multifundamental quasi-symmetric polynomials of T. Lam and P. Pylyavskyy. The second new basis is the kaon basis, a $K$ -theoretic deformation of the fundamental particle basis. We give positive expansions of the glide and Lascoux atom bases into this kaon basis. Throughout, we explore how the relationships among these $K$ -analogues mirror the relationships among their cohomological counterparts. We make several “alternating sum” conjectures that are suggestive of Euler characteristic calculations. 
    more » « less
  2. null (Ed.)
    Abstract One of the oldest outstanding problems in dynamical algebraic combinatorics is the following conjecture of P. Cameron and D. Fon-Der-Flaass (1995): consider a plane partition P in an $a \times b \times c$ box ${\sf B}$ . Let $\Psi (P)$ denote the smallest plane partition containing the minimal elements of ${\sf B} - P$ . Then if $p= a+b+c-1$ is prime, Cameron and Fon-Der-Flaass conjectured that the cardinality of the $\Psi $ -orbit of P is always a multiple of p . This conjecture was established for $p \gg 0$ by Cameron and Fon-Der-Flaass (1995) and for slightly smaller values of p in work of K. Dilks, J. Striker and the second author (2017). Our main theorem specializes to prove this conjecture in full generality. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)
  7. null (Ed.)
  8. null (Ed.)
    The jeu-de-taquin-based Littlewood-Richardson rule of H. Thomas and A. Yong (2009) for minuscule varieties has been extended in two orthogonal directions, either enriching the cohomology theory or else expanding the family of varieties considered. In one direction, A. Buch and M. Samuel (2016) developed a combinatorial theory of 'unique rectification targets' in minuscule posets to extend the Thomas-Yong rule from ordinary cohomology to $K$-theory. Separately, P.-E. Chaput and N. Perrin (2012) used the combinatorics of R. Proctor's '$d$-complete posets' to extend the Thomas-Yong rule from minuscule varieties to a broader class of Kac-Moody structure constants. We begin to address the unification of these theories. Our main result is the existence of unique rectification targets in a large class of $d$-complete posets. From this result, we obtain conjectural positive combinatorial formulas for certain $K$-theoretic Schubert structure constants in the Kac-Moody setting. 
    more » « less