skip to main content


Title: A Pandemic Crash Course: Learning to Teach Equitably in Synchronous Online Classes
This article describes an equity-focused professional learning community that used the EQUIP observation protocol to provide data analytics to instructors. The learning community met during Spring 2020, and due to the global coronavirus pandemic, it moved online midsemester. This article describes patterns of student participation and how they were impacted in moving online. We found that student participation dropped significantly in moving online, but instructors were able to implement new teaching strategies to increase participation. We document seven concrete strategies that instructors used to promote equitable participation in their online classes and that can be incorporated by biology educators into their online teaching. The strategies were: 1) re-establishing norms, 2) using student names, 3) using breakout rooms, 4) leveraging chat-based participation, 5) using polling software, 6) creating an inclusive curriculum, and 7) cutting content to maintain rigor. In addition, we describe the faculty learning process and how EQUIP data and the learning community environment supported instructors to change their practices.  more » « less
Award ID(s):
1943146
NSF-PAR ID:
10216379
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Schussler, Elisabeth
Date Published:
Journal Name:
CBE—Life Sciences Education
Volume:
19
Issue:
4
ISSN:
1931-7913
Page Range / eLocation ID:
ar60
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This research explores the barriers, concerns, and obstacles undergraduate STEM educators face when implementing high-impact teaching practices (HIPs), the application of which may improve student learning outcomes. Because our study took place during the COVID-19 pandemic, our results also shed light on the unique challenges of utilizing HIPs in asynchronous online-learning environments. Thirteen undergraduate instructors were interviewed about their current teaching practices in order to identify barriers to or support for adopting HIPs. Data collected through semi-structured interviews revealed administrative and financial restraints as barriers to effective teaching which have been found in previous research. A number of new and unique obstacles emerged out of teaching remotely or online during the pandemic, including a heightened concern over the instructor’s ability to connect with students and engage in the best teaching practices. This research extends our current understanding of barriers and concerns about adopting HIPs in undergraduate STEM courses because of the unique perceived threats that emerged during the pandemic. We identify strategies to equip faculty with the support they need to provide equitable learning experiences, including access to consultants who support curriculum development and implementation in the classroom, ongoing educational coaching, and increased access to professional-development opportunities and a community of inquiry to discuss teaching strategies.

     
    more » « less
  2. null (Ed.)
    This research paper studies the challenges that mathematics faculty and graduate teaching assistants (GTAs) faced when moving active and collaborative calculus courses from in-person to virtual instruction. As part of a larger pedagogical change project (described below), the math department at a public Research-1 university began transitioning pre-calculus and calculus courses to an active and collaborative learning (ACL) format in Fall 2019. The change began with the introduction of collaborative worksheets in recitations which were led by GTAs and supported by undergraduate learning assistants (LAs). Students recitation periods collaboratively solving the worksheet problems on whiteboards. When COVID-19 forced the rapid transition to online teaching, these ACL efforts faced an array of challenges. Faculty and GTA reflections on the changes to teaching and learning provide insight into how instructional staff can be supported in implementing ACL across various modes of instruction. The calculus teaching change efforts discussed in this paper are part of an NSF-supported project that aims to make ACL the default method of instruction in highly enrolled gateway STEM courses across the institution. The theoretical framework for the project builds on existing work on grassroots change in higher education (Kezar and Lester, 2011) to study the effect of communities of practice on changing teaching culture. The project uses course-based communities of practice (Wenger, 1999) that include instructors, GTAs, and LAs working together to design and enact teaching change in the targeted courses alongside ongoing professional development for GTAs and LAs. Six faculty and five GTAs involved in the teaching change effort in mathematics were interviewed after the Spring 2020 semester ended. Interview questions focused on faculty and GTA experiences implementing active learning after the rapid transition to online teaching. A grounded coding scheme was used to identify common themes in the challenges faced by instructors and GTAs as they moved online and in the impacts of technology, LA support, and the department community of practice on the move to online teaching. Technology, including both access and capabilities, emerged as a common barrier to student engagement. A particular barrier was students’ reluctance to share video or participate orally in sessions that were being recorded, making group work more difficult than it had been in a physical classroom. In addition, most students lacked access to a tablet for freehand writing, presenting a significant hurdle for sharing mathematical notation when physical whiteboards were no longer an option. These challenges point to the importance of incorporating flexibility in active learning implementation and in the professional development that supports teaching changes toward active learning, since what is conceived for a collaborative physical classroom may be implemented in a much different environment. The full paper will present a detailed analysis of the data to better understand how faculty and GTA experiences in the transition to online delivery can inform planning and professional development as the larger institutional change effort moves forward both in mathematics and in other STEM fields. 
    more » « less
  3. The hands-on approach in teaching and learning is an important resource to be explored because it offers a meaningful platform for student-instructor interaction that fosters sound scientific reasoning and improves the understanding of abstract chemistry concepts. Experiment-centric pedagogy (ECP) is a contemporary teaching approach that integrates active student participation in problem-based activities through hands-on mobile devices. This paper describes how experiment-centric pedagogy (ECP) has been used to teach key chemistry concepts to undergraduate students in the chemistry discipline at Historically Black University (HBCU). To assess whether ECP achieves a lasting increase in undergraduate student curiosity and engagement in the chemistry discipline, ECP was implemented from Fall 2021 to Fall 2022 using an inexpensive, safe, and portable electronic instrumentation system usable in both classrooms and laboratories. The Motivated Strategies for Learning Questionnaire developed by Pintrich, Smith, García, and McKeachie in 1991 was used to measure the key constructs associated with students’ curiosity and engagement. The classroom observation protocol (COPUS) was used to assess instructors’ effectiveness, and signature assignments were used to evaluate knowledge gains. 
    more » « less
  4. This research evaluates the impact of switching college engineering courses from in-person instruction to emergency remote learning among engineering students at a university in the Midwest. The study aimed to answer the question: What were the concerns and perceived challenges students faced when traditional in-person engineering courses suddenly transitioned to remote learning? The goal of this study is to uncover the challenges students were facing in engineering online courses and to understand students’ concerns. Our findings can help improve teaching instruction to provide students with previously unavailable educational assistance for online engineering courses. We collected online survey responses during weeks 8 and 9 of the academic semester, shortly after the COVID-19 shutdown and emergency transition to remote learning in Spring 2020. The survey included two open-ended questions which inquired about students’ feedback about moving the class online, and one two-item scale which assessed students’ confidence in online engineering learning. Data analysis for the open-ended questions was guided by the theoretical framework - Social Cognitive Career Theory [1] that explores how context, person factors and social cognitions contribute to career goals, interests and actions. A phenomenological approach [2] was conducted to understand the experience of these students. Open coding and axial coding [2] methods were used to create initial categories then themes related to students' concerns and challenges. Data from the two-item scale was evaluated using descriptive statistics: means, standard deviations, and ranges. Four main themes with separate sub-categories emerged from the student responses: 1) Instructor’s ability to teach course online (Instructional limitations, Seeking help, Increased Workload), 2) Student’s ability to learn online (Time Management, Lower engagement and motivation, Harder to absorb material, Hard to focus, Worry about performance), 3) Difficulties outside of class (Technology issues), and 4) No concerns. Students seemed more concerned about their ability to learn the material (48% of responses) than the instructor’s ability to teach the material (36% of responses). The instructional limitations or lack of instructional support (22% of responses) and time management (12% of responses) were among the major concerns in the sub-categories. The results from two-item scale indicated participants' s confidence in their ability to master their classroom knowledge was at an intermediate level via online instruction (6/10), and participants' confidence in the instructor's ability to teach knowledge in online classes is moderate to high (7/10). The results align with the open-ended question response in which students were somewhat more concerned about their ability to learn than the instructor’s ability to teach. The themes and analysis will be a valuable tool to help institutions and instructors improve student learning experiences. 
    more » « less
  5. This paper will highlight a small subsection of a larger scale project that focuses on increasing the use of active learning in science, technology, engineering, and mathematics (STEM) classrooms. Our overall project goals seek to expand the adoption of active learning in STEM classrooms. Active learning has been shown to improve student grades, retention rates, and overall understanding of course material. We define active learning as any time an instructor goes beyond lecturing to their students (e.g., think-pair-shares, class discussions). Research has shown adoption of active learning in STEM courses has been slow with one common cited reason for not implementing active learning in their courses is the fear of student resistance. Student resistance can be defined as any negative student reaction to active learning (e.g., distracting others, giving lower course evaluations, or refusing to participate in the activity). For this study, we recruited instructors from across the nation in the Summer of 2021 and collected data from instructors and students from Fall 2021-Winter 2022. During recruitment, we paid particular attention on ensuring we were recruiting instructors from a broad swath of institution types, including doctoral granting institutions, community colleges, and everything in between. While much of the research on active learning has focused on 4-year schools, this research aims to elucidate what active learning looks like in community colleges, as well as community college student perspectives on these activities. Additional data will share common strategies used for implementing active learning that differ between community college and four-year settings. This paper focuses on how instructors teaching at community colleges are using active learning in their classrooms and their attitudes towards active learning. Additionally, we will explore the instructor’s self-efficacy towards using active learning in the hopes of having a better overall understanding of what is occurring in STEM community college classrooms and where potential improvements can be made in terms of faculty development. 
    more » « less