skip to main content


This content will become publicly available on March 1, 2025

Title: High-Impact Teaching Practices in Higher Education: Understanding Barriers, Concerns, and Obstacles to Their Adoption

This research explores the barriers, concerns, and obstacles undergraduate STEM educators face when implementing high-impact teaching practices (HIPs), the application of which may improve student learning outcomes. Because our study took place during the COVID-19 pandemic, our results also shed light on the unique challenges of utilizing HIPs in asynchronous online-learning environments. Thirteen undergraduate instructors were interviewed about their current teaching practices in order to identify barriers to or support for adopting HIPs. Data collected through semi-structured interviews revealed administrative and financial restraints as barriers to effective teaching which have been found in previous research. A number of new and unique obstacles emerged out of teaching remotely or online during the pandemic, including a heightened concern over the instructor’s ability to connect with students and engage in the best teaching practices. This research extends our current understanding of barriers and concerns about adopting HIPs in undergraduate STEM courses because of the unique perceived threats that emerged during the pandemic. We identify strategies to equip faculty with the support they need to provide equitable learning experiences, including access to consultants who support curriculum development and implementation in the classroom, ongoing educational coaching, and increased access to professional-development opportunities and a community of inquiry to discuss teaching strategies.

 
more » « less
Award ID(s):
2021315
NSF-PAR ID:
10488165
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Trends in Higher Education
Volume:
3
Issue:
1
ISSN:
2813-4346
Page Range / eLocation ID:
105 to 121
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. There have been numerous demands for enhancements in the way undergraduate learning occurs today, especially at a time when the value of higher education continues to be called into question (The Boyer 2030 Commission, 2022). One type of demand has been for the increased integration of subjects/disciplines around relevant issues/topics—with a more recent trend of seeking transdisciplinary learning experiences for students (Sheets, 2016; American Association for the Advancement of Science, 2019). Transdisciplinary learning can be viewed as the holistic way of working equally across disciplines to transcend their own disciplinary boundaries to form new conceptual understandings as well as develop new ways in which to address complex topics or challenges (Ertas, Maxwell, Rainey, & Tanik, 2003; Park & Son, 2010). This transdisciplinary approach can be important as humanity’s problems are not typically discipline specific and require the convergence of competencies to lead to innovative thinking across fields of study. However, higher education continues to be siloed which makes the authentic teaching of converging topics, such as innovation, human-technology interactions, climate concerns, or harnessing the data revolution, organizationally difficult (Birx, 2019; Serdyukov, 2017). For example, working across a university’s academic units to collaboratively teach, or co-teach, around topics of convergence are likely to be rejected by the university systems that have been built upon longstanding traditions. While disciplinary expertise is necessary and one of higher education’s strengths, the structures and academic rigidity that come along with the disciplinary silos can prevent modifications/improvements to the roles of academic units/disciplines that could better prepare students for the future of both work and learning. The balancing of disciplinary structure with transdisciplinary approaches to solving problems and learning is a challenge that must be persistently addressed. These institutional challenges will only continue to limit universities seeking toward scaling transdisciplinary programs and experimenting with novel ways to enhance the value of higher education for students and society. This then restricts innovations to teaching and also hinders the sharing of important practices across disciplines. To address these concerns, a National Science Foundation Improving Undergraduate STEM Education project team, which is the topic of this paper, has set the goal of developing/implementing/testing an authentically transdisciplinary, and scalable educational model in an effort to help guide the transformation of traditional undergraduate learning to span academics silos. This educational model, referred to as the Mission, Meaning, Making (M3) program, is specifically focused on teaching the crosscutting practices of innovation by a) implementing co-teaching and co-learning from faculty and students across different academic units/colleges as well as b) offering learning experiences spanning multiple semesters that immerse students in a community that can nourish both their learning and innovative ideas. As a collaborative initiative, the M3 program is designed to synergize key strengths of an institution’s engineering/technology, liberal arts, and business colleges/units to create a transformative undergraduate experience focused on the pursuit of innovation—one that reaches the broader campus community, regardless of students’ backgrounds or majors. Throughout the development of this model, research was conducted to help identify institutional barriers toward creating such a cross-college program at a research-intensive public university along with uncovering ways in which to address these barriers. While data can show how students value and enjoy transdisciplinary experiences, universities are not likely to be structured in a way to support these educational initiatives and they will face challenges throughout their lifespan. These challenges can result from administration turnover whereas mutual agreements across colleges may then vanish, continued disputes over academic territory, and challenges over resource allotments. Essentially, there may be little to no incentives for academic departments to engage in transdisciplinary programming within the existing structures of higher education. However, some insights and practices have emerged from this research project that can be useful in moving toward transdisciplinary learning around topics of convergence. Accordingly, the paper will highlight features of an educational model that spans disciplines along with the workarounds to current institutional barriers. This paper will also provide lessons learned related to 1) the potential pitfalls with educational programming becoming “un-disciplinary” rather than transdisciplinary, 2) ways in which to incentivize departments/faculty to engage in transdisciplinary efforts, and 3) new structures within higher education that can be used to help faculty/students/staff to more easily converge to increase access to learning across academic boundaries. 
    more » « less
  2. Need/Motivation (e.g., goals, gaps in knowledge) The ESTEEM implemented a STEM building capacity project through students’ early access to a sustainable and innovative STEM Stepping Stones, called Micro-Internships (MI). The goal is to reap key benefits of a full-length internship and undergraduate research experiences in an abbreviated format, including access, success, degree completion, transfer, and recruiting and retaining more Latinx and underrepresented students into the STEM workforce. The MIs are designed with the goals to provide opportunities for students at a community college and HSI, with authentic STEM research and applied learning experiences (ALE), support for appropriate STEM pathway/career, preparation and confidence to succeed in STEM and engage in summer long REUs, and with improved outcomes. The MI projects are accessible early to more students and build momentum to better overcome critical obstacles to success. The MIs are shorter, flexibly scheduled throughout the year, easily accessible, and participation in multiple MI is encouraged. ESTEEM also establishes a sustainable and collaborative model, working with partners from BSCS Science Education, for MI’s mentor, training, compliance, and building capacity, with shared values and practices to maximize the improvement of student outcomes. New Knowledge (e.g., hypothesis, research questions) Research indicates that REU/internship experiences can be particularly powerful for students from Latinx and underrepresented groups in STEM. However, those experiences are difficult to access for many HSI-community college students (85% of our students hold off-campus jobs), and lack of confidence is a barrier for a majority of our students. The gap between those who can and those who cannot is the “internship access gap.” This project is at a central California Community College (CCC) and HSI, the only affordable post-secondary option in a region serving a historically underrepresented population in STEM, including 75% Hispanic, and 87% have not completed college. MI is designed to reduce inequalities inherent in the internship paradigm by providing access to professional and research skills for those underserved students. The MI has been designed to reduce barriers by offering: shorter duration (25 contact hours); flexible timing (one week to once a week over many weeks); open access/large group; and proximal location (on-campus). MI mentors participate in week-long summer workshops and ongoing monthly community of practice with the goal of co-constructing a shared vision, engaging in conversations about pedagogy and learning, and sustaining the MI program going forward. Approach (e.g., objectives/specific aims, research methodologies, and analysis) Research Question and Methodology: We want to know: How does participation in a micro-internship affect students’ interest and confidence to pursue STEM? We used a mixed-methods design triangulating quantitative Likert-style survey data with interpretive coding of open-responses to reveal themes in students’ motivations, attitudes toward STEM, and confidence. Participants: The study sampled students enrolled either part-time or full-time at the community college. Although each MI was classified within STEM, they were open to any interested student in any major. Demographically, participants self-identified as 70% Hispanic/Latinx, 13% Mixed-Race, and 42 female. Instrument: Student surveys were developed from two previously validated instruments that examine the impact of the MI intervention on student interest in STEM careers and pursuing internships/REUs. Also, the pre- and post (every e months to assess longitudinal outcomes) -surveys included relevant open response prompts. The surveys collected students’ demographics; interest, confidence, and motivation in pursuing a career in STEM; perceived obstacles; and past experiences with internships and MIs. 171 students responded to the pre-survey at the time of submission. Outcomes (e.g., preliminary findings, accomplishments to date) Because we just finished year 1, we lack at this time longitudinal data to reveal if student confidence is maintained over time and whether or not students are more likely to (i) enroll in more internships, (ii) transfer to a four-year university, or (iii) shorten the time it takes for degree attainment. For short term outcomes, students significantly Increased their confidence to continue pursuing opportunities to develop within the STEM pipeline, including full-length internships, completing STEM degrees, and applying for jobs in STEM. For example, using a 2-tailed t-test we compared means before and after the MI experience. 15 out of 16 questions that showed improvement in scores were related to student confidence to pursue STEM or perceived enjoyment of a STEM career. Finding from the free-response questions, showed that the majority of students reported enrolling in the MI to gain knowledge and experience. After the MI, 66% of students reported having gained valuable knowledge and experience, and 35% of students spoke about gaining confidence and/or momentum to pursue STEM as a career. Broader Impacts (e.g., the participation of underrepresented minorities in STEM; development of a diverse STEM workforce, enhanced infrastructure for research and education) The ESTEEM project has the potential for a transformational impact on STEM undergraduate education’s access and success for underrepresented and Latinx community college students, as well as for STEM capacity building at Hartnell College, a CCC and HSI, for students, faculty, professionals, and processes that foster research in STEM and education. Through sharing and transfer abilities of the ESTEEM model to similar institutions, the project has the potential to change the way students are served at an early and critical stage of their higher education experience at CCC, where one in every five community college student in the nation attends a CCC, over 67% of CCC students identify themselves with ethnic backgrounds that are not White, and 40 to 50% of University of California and California State University graduates in STEM started at a CCC, thus making it a key leverage point for recruiting and retaining a more diverse STEM workforce. 
    more » « less
  3. Background/Context: After-school programs that focus on integrating computer programming and mathematics in authentic environments are seldomly accessible to students from culturally and linguistically diverse backgrounds, particularly bilingual Latina students in rural contexts. Providing a context that broadens Latina students’ participation in mathematics and computer programming requires educators to carefully examine how verbal and nonverbal language is used to interact and to position students as they learn new concepts in middle school. This is also an important stage for adolescents because they are likely to make decisions about their future careers in STEM. Having access to discourse and teaching practices that invite students to participate in mathematics and computer programming affords them opportunities to engage with these fields. Purpose/Focus of Study: This case study analyzes how small-group interactions mediated the positionings of Cindy, a bilingual Latina, as she learned binary numbers in an after-school program that integrated computer programming and mathematics (CPM). Setting: The Advancing Out-of-School Learning in Mathematics and Engineering (AOLME) program was held in a rural bilingual (Spanish and English) middle school in the Southwest. The after-school program was designed to provide experiences for primarily Latinx students to learn how to integrate mathematics with computer programming using Raspberry Pi and Python as a platform. Our case study explores how Cindy was positioned as she interacted with two undergraduate engineering students who served as facilitators while learning binary numbers with a group of three middle school students. Research Design: This single intrinsic case focused on exploring how small-group interactions among four students mediated Cindy’s positionings as she learned binary numbers through her participation in AOLME. Data sources included twelve 90-minute video sessions and Cindy’s journal and curriculum binder. Video logs were created, and transcripts were coded to describe verbal and nonverbal interactions among the facilitators and Cindy. Analysis of select episodes was conducted using systemic functional linguistics (SFL), specifically language modality, to identify how positioning took place. These episodes and positioning analysis describe how Cindy, with others, navigated the process of learning binary numbers under the stereotype that female students are not as good at mathematics as male students. Findings: From our analysis, three themes that emerged from the data portray Cindy’s experiences learning binary numbers. The major themes are: (1) Cindy’s struggle to reveal her understanding of binary numbers in a competitive context, (2) Cindy’s use of “fake it until you make it” to hide her cognitive dissonance, and (3) the use of Spanish and peers’ support to resolve Cindy’s understanding of binary numbers. The positioning patterns observed help us learn how, when Cindy’s bilingualism was viewed and promoted as an asset, this social context worked as a generative axis that addressed the challenges of learning binary numbers. The contrasting episodes highlight the facilitators’ productive teaching strategies and relations that nurtured Cindy’s social and intellectual participation in CPM. Conclusions/Recommendations: Cindy’s case demonstrates how the facilitator’s teaching, and participants’ interactions and discourse practices contributed to her qualitatively different positionings while she learned binary numbers, and how she persevered in this process. Analysis of communication acts supported our understanding of how Cindy’s positionings underpinned the discourse; how the facilitators’ and students’ discourse formed, shaped, or shifted Cindy’s positioning; and how discourse was larger than gender storylines that went beyond classroom interactions. Cindy’s case reveals the danger of placing students in “struggle” instead of a “productive struggle.” The findings illustrated that when Cindy was placed in struggle when confronting responding moves by the facilitator, her “safe” reaction was hiding and avoiding. In contrast, we also learned about the importance of empathetic, nurturing supporting responses that encourage students’ productive struggle to do better. We invite instructors to notice students’ hiding or avoiding and consider Cindy’s case. Furthermore, we recommend that teachers notice their choice of language because this is important in terms of positioning students. We also highlight Cindy’s agency as she chose to take up her friend’s suggestion to “fake it” rather than give up. 
    more » « less
  4. Abstract

    Faculty development and support play an important role in improving undergraduate STEM education. Learning communities, including Faculty Online Learning Communities (FOLCs), can be a valuable resource for faculty seeking professional growth. This multi-case study examined how faculty gained value through participation in a curriculum-focused FOLC. Adopting a community of practice perspective, the value creation framework developed by Wenger, et al., was used to examine cycles of value creation for the five case study participants and identify key ways in which participation in the FOLC supported value creation.

    All five case study participants shared comprehensive stories about how they gained value through participation in FOLC activities over multiple years. All initiated their value creation stories by describing pedagogical approaches they were unhappy about. As their stories unfolded, they described how they implemented new and innovative strategies to address their concerns, leading to outcomes consistent with the original pedagogical goals of the learning community. Two faculty described how the community helped them see new leadership roles for themselves within their departments, outcomes that were not anticipated at the initiation of the FOLC. Other participants spoke of a decreased feeling of professional isolation. Several features of the FOLC emerged as crucial factors in value creation, including structural elements such as regular meetings, a shared curricular focus, and leadership and networking opportunities. Importantly, study participants identified extended participation in the community and continuing feedback from multiple perspectives as drivers of reflection and growth.

    These findings suggest that while short term participation in a FOLC or other faculty community may help achieve more prescribed outcomes, longer term participation supports a more emergent approach to faculty development. This research offers insights for faculty, curriculum developers, administrators, and others interested in promoting faculty development.

     
    more » « less
  5. Improving undergraduate STEM teaching for diverse students is dependent to some extent on increasing the representation of Black, Indigenous and People of Color (BIPOC) and women in the ranks of faculty in engineering departments. However, new faculty members, whether they had postdoctoral training or not, report that they were not adequately prepared for academia. To address this need, a professional development program was developed for underrepresented doctoral and postdoctoral students, which focused on various strategies to be successful in teaching, research and service aspects of academic positions. The program included an intensive two-week summer session, with follow-up mentoring during the academic year, and was conducted from 2017 to 2020 with three cohorts of fellows recruited from across the country. To evaluate the impact of the program on the participants’ perceptions of their preparation for academic careers, a follow up survey was sent in May 2021 to the three former cohorts of participants (n=61), and responses were received from 37 of them. The survey asked participants to reflect on areas that they felt most prepared for in their academic positions, and areas that they felt least prepared for. The survey also asked participants to discuss additional supports they would have liked to have been provided with to better prepare them given their current positions (academic, industry, etc.). Results from the survey indicated that 92% of participants found the professional development program prepared them for the responsibilities and expectations to succeed in academic positions. Over 90% agreed that the program prepared them for the application process for a tenure track search, and 89% agreed the program prepared them for the primary components of the startup package. In addition, participants reported that the program increased their preparation in developing teaching philosophy (100%), developing learning outcomes (97%), and using active learning strategies during teaching (91%). The majority agreed that the program helped prepare them to teach students with various cultural backgrounds, and to develop and use assessment strategies. Participants were also asked to discuss the impact of the Covid 19 pandemic on their career trajectory, and most of them reported being somewhat impacted (65%) to extremely impacted (29%). Participants reported few or no job openings, cancelations of interviews, delays in research which impacted the rate of completing degrees, and publications, which affected the participants’ application competitiveness. Furthermore, working from home and balancing family and academic responsibilities affected their productivity. Based on the survey results, funds were secured to provide an additional day of professional training to cover any items not addressed during summer training, as well as any issues, challenges, or concerns they might have encountered while fulfilling their academic position. Thirty-three ACADEME fellows have indicated that they will participate in the new professional development, held in May 2022. Results from this analysis, and preliminary topics and outcomes of the supplemental activities are discussed. The findings contribute to the literature by increasing knowledge of specific challenges that new faculty encounter and can inform future efforts to support minorities and women in engineering doctoral programs. 
    more » « less