This research explores an equity-minded approach to broadening participation in high-impact practices (HIPs) in information systems (IS) education. HIPs have been shown to enhance student engagement, learning, and success for all students with outsized gains for historically underserved groups in the U.S. Despite these salutary benefits, underserved groups often face systemic barriers to authentic access and participation in HIPs. Barriers include non-inclusive and unwelcoming learning environments, faculty beliefs regarding student ability, and outdated teaching practices. To address these challenges, this paper develops a framework for broadening participation in HIPs through “high-impact faculty development” focused on three key strategies: (1) cultivating an equitable and inclusive learning environment, (2) incorporating microaffirmations into everyday teaching, and (3) adopting evidence-based, inclusive teaching practices. By advancing this framework, the research contributes to the growing body of literature on social inclusion in IS education and offers a pathway for broadening participation in HIPs. 
                        more » 
                        « less   
                    
                            
                            High-Impact Teaching Practices in Higher Education: Understanding Barriers, Concerns, and Obstacles to Their Adoption
                        
                    
    
            This research explores the barriers, concerns, and obstacles undergraduate STEM educators face when implementing high-impact teaching practices (HIPs), the application of which may improve student learning outcomes. Because our study took place during the COVID-19 pandemic, our results also shed light on the unique challenges of utilizing HIPs in asynchronous online-learning environments. Thirteen undergraduate instructors were interviewed about their current teaching practices in order to identify barriers to or support for adopting HIPs. Data collected through semi-structured interviews revealed administrative and financial restraints as barriers to effective teaching which have been found in previous research. A number of new and unique obstacles emerged out of teaching remotely or online during the pandemic, including a heightened concern over the instructor’s ability to connect with students and engage in the best teaching practices. This research extends our current understanding of barriers and concerns about adopting HIPs in undergraduate STEM courses because of the unique perceived threats that emerged during the pandemic. We identify strategies to equip faculty with the support they need to provide equitable learning experiences, including access to consultants who support curriculum development and implementation in the classroom, ongoing educational coaching, and increased access to professional-development opportunities and a community of inquiry to discuss teaching strategies. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2021315
- PAR ID:
- 10488165
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Trends in Higher Education
- Volume:
- 3
- Issue:
- 1
- ISSN:
- 2813-4346
- Page Range / eLocation ID:
- 105 to 121
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            ABSTRACT While many STEM (science, technology, engineering, and mathematics) instructors returned to in-person instruction in fall 2021, others found themselves continuing to teach via online, hybrid, or hybrid flexible (i.e., hyflex) formats. Regardless of one’s instructional modality, the findings from our own and other studies provided insight into effective strategies for increasing student engagement and decreasing cognitive overload. As part of this perspective, we included data from undergraduate students, many of whom are first generation and low income and from marginalized backgrounds, to identify instructional practices that helped them thrive and succeed during the recent COVID-19 pandemic. More specifically, we explored the various pedagogies and technologies utilized during emergency remote teaching to identify best practices as we considered the future of teaching. In sharing best practices at our institution, we aimed to provide a framework for deep reflection among the readers and the identification of practices to start, stop, and/or continue at their own institutions.more » « less
- 
            Miller, Eva (Ed.)The recent outbreak of COVID-19, considered as being a lethal pandemic by the World Health Organization, has caused profound changes in the educational system within the U.S and across the world. Overnight, universities and their educators had to switch to a largely online teaching format, which challenged their capacity to deliver learning content effectively to STEM students. Students were forced to adapt to a new learning environment in the midst of challenges in their own lives due to the COVID-19 effects on society and professional expectations. The main purpose of this paper is to investigate faculty perceptions of STEM student experiences during COVID-19. Through a qualitative methodology consisting of one-hour zoom interviews administered to 32 STEM faculty members from six U.S. Universities nationwide, faculty narratives regarding student and faculty experiences during COVID-19 were obtained. The qualitative research approach involved identifying common themes across faculty experiences and views in these narratives. Some of the categories of emerging themes associated with faculty perceptions on student and faculty experiences included: student struggles and challenges, student cheating and the online environment, faculty and student adaptability, faculty and student needs and support, and university resources and support. Best practices to facilitate online teaching and learning employed by STEM faculty were also discussed. Key findings revealed that students and faculty had both positive and negative experiences during COVID-19. Additionally, there was a greater need for consistent policies to improve the online student learning experiences. Recommendations to improve STEM student experiences include increased institutional resources and collaboration between faculty and the university administrators to provide a coherent online learning environment. Preliminary findings also provide insights to enhance institutional adaptability and resilience for improving STEM student experiences during future pandemics. Future research should continue to explore institutional adaptation strategies that enhance STEM student learning during pandemics.more » « less
- 
            Lischka, A. E.; Dyer, E. B.; Jones, R. S.; Lovett, J. N.; Strayer, J.; & Drown, S. (Ed.)Many higher education institutions in the United States provide mathematics tutoring services for undergraduate students. These informal learning experiences generally result in increased final course grades (Byerly & Rickard, 2018; Rickard & Mills, 2018; Xu et al., 2014) and improved student attitudes toward mathematics (Bressoud et al., 2015). In recent years, research has explored the beliefs and practices of undergraduate and, sometimes graduate, peer tutors, both prior to (Bjorkman, 2018; Johns, 2019; Pilgrim et al., 2020) and during the COVID19 pandemic (Gyampoh et al., 2020; Mullen et al., 2021; Van Maaren et al., 2021). Additionally, Burks and James (2019) proposed a framework for Mathematical Knowledge for Tutoring Undergraduate Mathematics adapted from Ball et al. (2008) Mathematical Knowledge for Teaching, highlighting the distinction between tutor and teacher. The current study builds on this body of work on tutors’ beliefs by focusing on mathematical sciences graduate teaching assistants (GTAs) who tutored in an online setting during the 2020-2021 academic year due to the COVID-19 pandemic. Specifically, this study addresses the following research question: What were the mathematical teaching beliefs and practices of graduate student tutors participating in online tutoring sessions through the mathematics learning center (MLC) during the COVID-19 pandemic?more » « less
- 
            null (Ed.)This paper is based on a series of semi-structured, qualitative interviews that were conducted with students, by an undergraduate student and lead author of this paper, that focused on their experiences with educational technologies and online teaching pedagogy in the wake of the COVID-19 pandemic. As U.S. educators scrambled to adapt to online course delivery modes as a result of the first wave of the pandemic in the spring 2020 semester, those in the educational technology and online learning community saw the potential of this movement to vastly accelerate the implementation of online systems in higher education. A shift that may have taken 20 years to accomplish was implemented in two waves, first with the immediate forced shift to online learning in March 2020; and second, a less immediate shift to hybrid and online instruction designed to accommodate the different geographic variation in COVID-19 intensity, along with varied political and institutional ecologies surrounding online versus in-person instruction for the 2020-2021 academic year. With all of the rapid changes that were occurring during the spring of 2020, we wanted to investigate how students experienced and perceived faculty use of technology during this particular moment in time. This study documents this transition through the eyes of undergraduate students, and demonstrates the varied ways in which faculty navigated the transition to online learning. According to our interviewees, some faculty were thoughtful and competent and provided a supportive environment that paid attention to a students’ capacity for online learning, rather than maintaining traditional instructional practices. Others relied on practices from in-person instruction that were familiar, but appeared to be nervous in the new online teaching environment. Then there were those who seemed occupied by other concerns, where a focus on effective undergraduate teaching remained limited to begin with, and their approach to online instruction was driven by convenience. Our qualitative data clearly reveals that the ways in which faculty conducted their online courses directly impacted student learning experiences. In this study, we set out to document both the faculty instructional strategies in a hybrid/online environment and student accounts of those choices and their resulting experiences. While we continue to analyze this unique data set on this moment of transition in engineering education, we hope that this paper will also lead to policy recommendations regarding faculty adaptations to online instruction in general. We include some initial thoughts and recommendations below.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    