skip to main content


Title: Metabolism of a subtidal rocky mussel reef in a high-temperate setting: pathways of organic C flow
Mytilid mussels form abundant, species-rich reefs on rocky substrates, but the role of this key habitat in carbon (C) cycling remains poorly understood. We performed a seasonal study on a 5 m deep photic Mytilus trossulus reef in the Central Baltic Sea to investigate pathways and rates of organic C flow. Reef gross primary production (GPP) and respiration ( R ) were estimated seasonally using underwater O 2 eddy covariance on hourly and daily timescales. Photogrammetry and biotic sampling were used to quantify reef rugosity and mussel coverage, and to derive mussel filtration and biodeposition. Mussels were highly abundant, reaching ~50000 ind. m -2 , and the reef structure increased the seabed surface area by 44%. GPP hourly was up to 20 mmol O 2 m -2 h -1 and GPP daily was up to 107 mmol O 2 m -2 d -1 , comparable to a nearby seagrass canopy. Hourly eddy fluxes responded linearly to light intensity and flow velocity, with higher velocities enhancing reef O 2 uptake at night. Reef R daily exceeded GPP daily on 12 of 13 measurement days, and R annual (29 mol O 2 m -2 yr -1 ) was 3-fold larger than GPP annual . The reef sustained a productive community of microbes and fauna whose activities accounted for ~50% of R annual . Horizontal water advection promoted food supply to the reef and likely facilitated substantial lateral C export of mussel biodeposits. Our analyses suggest that a reduction in mussel reef extent due to ongoing environmental change will have major implications for the transport and transformation of C and nutrients within the coastal Baltic Sea.  more » « less
Award ID(s):
1824144 1851424
NSF-PAR ID:
10216596
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Marine Ecology Progress Series
Volume:
645
ISSN:
0171-8630
Page Range / eLocation ID:
41 to 54
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The important role of macroalgal canopies in the oceanic carbon (C) cycle is increasingly being recognized, but direct assessments of community productivity remain scarce. We conducted a seasonal study on a sublittoral Baltic Sea canopy of the brown algaFucus vesiculosus, a prominent species in temperate and Arctic waters. We investigated community production on hourly, daily, and seasonal timescales. Aquatic eddy covariance (AEC) oxygen flux measurements integrated ~ 40 m2of the seabed surface area and documented considerable oxygen production by the canopy year‐round. High net oxygen production rates of up to 35 ± 9 mmol m−2h−1were measured under peak irradiance of ~ 1200 μmol photosynthetically active radiation (PAR) m−2s−1in summer. However, high rates > 15 mmol m−2h−1were also measured in late winter (March) under low light intensities < 250 μmol PAR m−2s−1and water temperatures of ~ 1°C. In some cases, hourly AEC fluxes documented an apparent release of oxygen by the canopy under dark conditions, which may be due to gas storage dynamics within internal air spaces ofF. vesiculosus.Daily net ecosystem metabolism (NEM) was positive (net autotrophic) in all but one of the five measurement campaigns (December). A simple regression model predicted a net autotrophic canopy for two‐thirds of the year, and annual canopyNEMamounted to 25 mol O2m−2yr−1, approximately six‐fold higher than net phytoplankton production. Canopy C export was ~ 0.3 kg C m−2yr−1, comparable to canopy standing biomass in summer. Macroalgal canopies thus represent regions of intensified C assimilation and export in coastal waters.

     
    more » « less
  2. Abstract

    The biogeochemical processes of carbon (C), nitrogen (N), and phosphorous (P) are fully coupled in the Earth system, which shape the structure, functioning, and dynamics of terrestrial ecosystems. However, the representation of P cycle in terrestrial biosphere models (TBMs) is still in an early stage. Here we incorporated P processes and C‐N‐P interactions into the C‐N coupled Dynamic Land Ecosystem Model (DLEM‐CNP), which had a major feature of the ability in simulating the N and P colimitation on vegetation C assimilation. DLEM‐CNP was intensively calibrated and validated against daily or annual observations from four eddy covariance flux sites, two Hawaiian sites along a chronosequence of soils, and other 13 tropical forest sites. The results indicate that DLEM‐CNP significantly improved simulations of forest gross and net primary production (R2: 0.36–0.97, RMSE:1.1–1.49 g C m−2 year−1for daily GPP at eddy covariance flux sites;R2 = 0.92, RMSE = 176.7 g C m−2 year−1for annual NPP across 13 tropical forest sites). The simulations were also consistent with field observations in terms of biomass, leaf N:P ratio and plant response to fertilizer addition. A sensitivity analysis suggests that simulated results are reasonably robust against uncertainties in model parameter estimates and the model was very sensitive to parameters of P uptake. These results suggest that incorporating P processes and N‐P interaction into terrestrial biosphere models is of critical importance for accurately estimating C dynamics in tropical forests, particularly those P‐limited ones.

     
    more » « less
  3. Abstract

    We mapped tidal wetland gross primary production (GPP) with unprecedented detail for multiple wetland types across the continental United States (CONUS) at 16‐day intervals for the years 2000–2019. To accomplish this task, we developed the spatially explicit Blue Carbon (BC) model, which combined tidal wetland cover and field‐based eddy covariance tower data into a single Bayesian framework, and used a super computer network and remote sensing imagery (Moderate Resolution Imaging Spectroradiometer Enhanced Vegetation Index). We found a strong fit between the BC model and eddy covariance data from 10 different towers (r2= 0.83,p< 0.001, root‐mean‐square error = 1.22 g C/m2/day, average error was 7% with a mean bias of nearly zero). When compared with NASA's MOD17 GPP product, which uses a generalized terrestrial algorithm, the BC model reduced error by approximately half (MOD17 hadr2= 0.45,p< 0.001, root‐mean‐square error of 3.38 g C/m2/day, average error of 15%). The BC model also included mixed pixels in areas not covered by MOD17, which comprised approximately 16.8% of CONUS tidal wetland GPP. Results showed that across CONUS between 2000 and 2019, the average daily GPP per m2was 4.32 ± 2.45 g C/m2/day. The total annual GPP for the CONUS was 39.65 ± 0.89 Tg C/year. GPP for the Gulf Coast was nearly double that of the Atlantic and Pacific Coasts combined. Louisiana alone accounted for 15.78 ± 0.75 Tg C/year, with its Atchafalaya/Vermillion Bay basin at 4.72 ± 0.14 Tg C/year. The BC model provides a robust platform for integrating data from disparate sources and exploring regional trends in GPP across tidal wetlands.

     
    more » « less
  4. Abstract

    Marine habitat‐forming species often play critical roles on rocky shores by ameliorating stressful conditions for associated organisms. Such ecosystem engineers provide structure and shelter, for example, by creating refuges from thermal and desiccation stresses at low tide. Less explored is the potential for habitat formers to alter interstitial seawater chemistry during their submergence. Here, we quantify the capacity for dense assemblages of the California mussel,Mytilus californianus, to change seawater chemistry (dissolved O2, pH, and total alkalinity) within the interiors of mussel beds at high tide via respiration and calcification. We established a living mussel bed within a laboratory flow tank and measured vertical pH and oxygen gradients within and above the mussel bed over a range of water velocities. We documented decreases of up to 0.1 pH and 25μmol O2kg−1internal to the bed, along with declines of 100μmol kg−1in alkalinity, when external flows were < 0.05 m s−1. Although California mussels often live in habitats subjected to much faster velocities, sizeable populations also inhabit bays and estuaries where such moderate flow speeds can occur > 95% of the time. Reductions in pH and O2inside mussel beds may negatively impact resident organisms and exacerbate parallel human‐induced perturbations to ocean chemistry while potentially selecting for improved tolerance to altered chemistry conditions.

     
    more » « less
  5. Abstract

    Arctic‐boreal landscapes are experiencing profound warming, along with changes in ecosystem moisture status and disturbance from fire. This region is of global importance in terms of carbon feedbacks to climate, yet the sign (sink or source) and magnitude of the Arctic‐boreal carbon budget within recent years remains highly uncertain. Here, we provide new estimates of recent (2003–2015) vegetation gross primary productivity (GPP), ecosystem respiration (Reco), net ecosystem CO2exchange (NEE;Reco − GPP), and terrestrial methane (CH4) emissions for the Arctic‐boreal zone using a satellite data‐driven process‐model for northern ecosystems (TCFM‐Arctic), calibrated and evaluated using measurements from >60 tower eddy covariance (EC) sites. We used TCFM‐Arctic to obtain daily 1‐km2flux estimates and annual carbon budgets for the pan‐Arctic‐boreal region. Across the domain, the model indicated an overall average NEE sink of −850 Tg CO2‐C year−1. Eurasian boreal zones, especially those in Siberia, contributed to a majority of the net sink. In contrast, the tundra biome was relatively carbon neutral (ranging from small sink to source). Regional CH4emissions from tundra and boreal wetlands (not accounting for aquatic CH4) were estimated at 35 Tg CH4‐C year−1. Accounting for additional emissions from open water aquatic bodies and from fire, using available estimates from the literature, reduced the total regional NEE sink by 21% and shifted many far northern tundra landscapes, and some boreal forests, to a net carbon source. This assessment, based on in situ observations and models, improves our understanding of the high‐latitude carbon status and also indicates a continued need for integrated site‐to‐regional assessments to monitor the vulnerability of these ecosystems to climate change.

     
    more » « less