skip to main content


Search for: All records

Award ID contains: 1851424

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The aquatic eddy covariance technique is increasingly used to determine oxygen (O2) fluxes over benthic ecosystems. The technique uses O2measuring systems that have a high temporal and numerical resolution. In this study, we performed a series of lab and field tests to assess a new optical submersible O2meter designed for aquatic eddy covariance measurements and equipped with an existing ultra‐high speed optical fiber sensor. The meter has a 16‐bit digital‐to‐analog‐signal conversion that produces a 0–5 V output at a rate up to 40 Hz. The device was paired with an acoustic Doppler velocimeter. The combined meter and fiber‐optic O2sensor's response time was significantly faster in O2‐undersaturated water compared to in O2‐supersaturated water (0.087 vs. 0.12 s), but still sufficiently fast for aquatic eddy covariance measurements. The O2optode signal was not sensitive to variations in water flow or light exposure. However, the response time was affected by the direction of the flow. When the sensor tip was exposed to a flow from the back rather than the front, the response time increased by 37%. The meter's internal signal processing time was determined to be ~ 0.05 s, a delay that can be corrected for during postprocessing. In order for the built‐in temperature correction to be accurate, the meter should always be submerged with the fiber‐optic sensor. In multiple 21–47 h field tests, the system recorded consistently high‐quality, low‐noise O2flux data. Overall, the new meter is a powerful option for collecting robust aquatic eddy covariance data.

     
    more » « less
  2. Abstract

    Seagrass meadows are valued for their ecosystem services, including their role in mitigating anthropogenic CO2emissions through ‘blue carbon’ sequestration and storage. This study quantifies the dynamics of whole ecosystem metabolism on daily to interannual timescales for an eelgrass (Zostera marina) meadow using in situ benthic O2flux measurements by aquatic eddy covariance over a period of 11 yr. The measurements were part of the Virginia Coast Reserve Long‐Term Ecological Research study, and covered a relatively stable period of seagrass ecosystem metabolism 6–13 yr after restoration by seeding (2007–2014), a die‐off event likely related to persistently high temperatures during peak growing season in 2015, and a partial recovery from 2016 to 2018. This unique sequence provides an unprecedented opportunity to study seagrass resilience to temperature stress. With this extensive data set covering 115 full diel cycles, we constructed an average annual oxygen budget that indicated the meadow was in metabolic balance when averaged over the entire period, with gross primary production and respiration equal to 95 and −94 mmol O2m−2d−1, respectively. On an interannual scale, there was a shift in trophic status from balanced to net heterotrophy during the die‐off event in 2015, then to net autotrophy as the meadow recovered. The highly dynamic and variable nature of seagrass metabolism captured by our aquatic eddy covariance data emphasizes the importance of using frequent measurements throughout the year to correctly estimate trophic status of seagrass meadows.

     
    more » « less
  3. Abstract

    Seagrass meadows play an important role in “blue carbon” sequestration and storage, but their dynamic metabolism is not fully understood. In a denseZostera marinameadow, we measured benthic O2fluxes by aquatic eddy covariance, water column concentrations of O2, and partial pressures of CO2(pCO2) over 21 full days during peak growing season in April and June. Seagrass metabolism, derived from the O2flux, varied markedly between the 2 months as biomass accumulated and water temperature increased from 16°C to 28°C, triggering a twofold increase in respiration and a trophic shift of the seagrass meadow from being a carbon sink to a carbon source. Seagrass metabolism was the major driver of diurnal fluctuations in water column O2concentration and pCO2, ranging from 173 to 377 μmol L−1and 193 to 859 ppmv, respectively. This 4.5‐fold variation in pCO2was observed despite buffering by the carbonate system. Hysteresis in diurnal water column pCO2vs. O2concentration was attributed to storage of O2and CO2in seagrass tissue, air–water exchange of O2and CO2, and CO2storage in surface sediment. There was a ~ 1:1 mol‐to‐mol stoichiometric relationship between diurnal fluctuations in concentrations of O2and dissolved inorganic carbon. Our measurements showed no stimulation of photosynthesis at high CO2and low O2concentrations, even though CO2reached levels used in IPCC ocean acidification scenarios. This field study does not support the notion that seagrass meadows may be “winners” in future oceans with elevated CO2concentrations and more frequent temperature extremes.

     
    more » « less
  4. Abstract

    The important role of macroalgal canopies in the oceanic carbon (C) cycle is increasingly being recognized, but direct assessments of community productivity remain scarce. We conducted a seasonal study on a sublittoral Baltic Sea canopy of the brown algaFucus vesiculosus, a prominent species in temperate and Arctic waters. We investigated community production on hourly, daily, and seasonal timescales. Aquatic eddy covariance (AEC) oxygen flux measurements integrated ~ 40 m2of the seabed surface area and documented considerable oxygen production by the canopy year‐round. High net oxygen production rates of up to 35 ± 9 mmol m−2h−1were measured under peak irradiance of ~ 1200 μmol photosynthetically active radiation (PAR) m−2s−1in summer. However, high rates > 15 mmol m−2h−1were also measured in late winter (March) under low light intensities < 250 μmol PAR m−2s−1and water temperatures of ~ 1°C. In some cases, hourly AEC fluxes documented an apparent release of oxygen by the canopy under dark conditions, which may be due to gas storage dynamics within internal air spaces ofF. vesiculosus.Daily net ecosystem metabolism (NEM) was positive (net autotrophic) in all but one of the five measurement campaigns (December). A simple regression model predicted a net autotrophic canopy for two‐thirds of the year, and annual canopyNEMamounted to 25 mol O2m−2yr−1, approximately six‐fold higher than net phytoplankton production. Canopy C export was ~ 0.3 kg C m−2yr−1, comparable to canopy standing biomass in summer. Macroalgal canopies thus represent regions of intensified C assimilation and export in coastal waters.

     
    more » « less
  5. Abstract Hadal trenches are depocenters for organic material, and host intensified benthic microbial activity. The enhanced deposition is presumed to be reflected in elevated meiofaunal standing-stock, but available studies are ambiguous. Here, we investigate the distribution of meiofauna along the Atacama Trench axis and adjacent abyssal and bathyal settings in order to relate the meiofauna densities to proxies for food availability. Meiofauna densities peaked at the sediment surface and attenuated steeply with increasing sediment depth. The distribution mirrored the vertical profile of the microbial-driven oxygen consumption rate demonstrating a close linkage between microbial activity and meiofauna density. Meiofaunal standing-stock along the trench axis varied by a factor of two, but were markedly higher than values from the abyssal site at the oceanic plate. Overall, meiofaunal densities poorly correlated with common proxies for food availability such as total organic carbon and phytopigments, but strongly correlated with the microbial benthic O 2 consumption rate. We argue that microbial biomass likely represents an important meiofaunal food source for hadal meiofauna. Observations from three trench systems underlying surface water of highly different productivity confirmed elevated meiofaunal densities at the trench axis as compared to abyssal sites on oceanic plates. Food availability appear to drive elevated abundance and variations in meiofauna densities in hadal sediments. 
    more » « less
  6. Oysters are described as estuarine ecosystem engineers because their reef structures provide habitat for a variety of flora and fauna, alter hydrodynamics, and affect sediment composition. To what spatial extent oyster reefs influence surrounding infauna and sediment composition remains uncertain. We sampled sediment and infauna across 8 intertidal mudflats at distances up to 100 m from oyster reefs within coastal bays of Virginia, USA, to determine if distance from reefs and physical site characteristics (reef elevation, local hydrodynamics, and oyster cover) explain the spatial distributions of infauna and sediment. Total infauna density increased with distance away from reefs; however, the opposite was observed for predatory crustaceans (primarily crabs). Our results indicate a halo surrounding the reefs of approximately 40 m (using an increase in ~25% of observance as the halo criterion). At 90 m from reefs, bivalves and gastropods were 70% more likely to be found (probability of observance), while there was an approximate 4-fold decrease for large crustaceans compared to locations adjacent to reefs. Increases in percent oyster reef cover and/or mean reef area did not statistically alter infauna densities but showed a statistical correlation with smaller sediment grain size, increased organic matter, and reduced flow rates. Weaker flow conditions within the surrounding mudflats were also associated with smaller grain sizes and higher organic matter content, suggesting multiple drivers on the spatial distribution of sediment composition. This study emphasizes the complexity of bio-physical couplings and the considerable spatial extent over which oyster reefs engineer intertidal communities. 
    more » « less
  7. Aquatic eddy covariance (AEC) is increasingly being used to study benthic oxygen (O 2 ) flux dynamics, organic carbon cycling, and ecosystem health in marine and freshwater environments. Because it is a noninvasive technique, has a high temporal resolution (∼15 min), and integrates over a large area of the seafloor (typically 10–100 m 2 ), it has provided new insights on the functioning of aquatic ecosystems under naturally varying in situ conditions and has given us more accurate assessments of their metabolism. In this review, we summarize biogeochemical, ecological, and biological insightsgained from AEC studies of marine ecosystems. A general finding for all substrates is that benthic O 2 exchange is far more dynamic than earlier recognized, and thus accurate mean values can only be obtained from measurements that integrate over all timescales that affect the local O 2 exchange. Finally, we highlight new developments of the technique, including measurements of air–water gas exchange and long-term deployments. 
    more » « less
  8. null (Ed.)
    Abstract The deepest part of the global ocean, hadal trenches, are considered to act as depocenters for organic material. Relatively high microbial activity has been demonstrated in the deepest sections of some hadal trenches, but the deposition dynamics are thought to be spatially and temporally variable. Here, we explore sediment characteristics and in-situ benthic oxygen uptake along two trenches with contrasting surface primary productivity: the Kermadec and Atacama trenches. We find that benthic oxygen consumption varies by a factor of about 10 between hadal sites but is in all cases intensified relative to adjacent abyssal plains. The benthic oxygen uptake of the two trench regions reflects the difference in surface production, whereas variations within each trench are modulated by local deposition dynamics. Respiratory activity correlates with the sedimentary inventories of organic carbon and phytodetrital material. We argue that hadal trenches represent deep sea hotspots for early diagenesis and are more diverse and dynamic environments than previously recognized. 
    more » « less
  9. Organic carbon mineralization and nutrient cycling in benthic environments are critically important for their biogeochemical functioning, but are poorly understood in coastal upwelling systems. The main objective of this study was to determine benthic oxygen fluxes in a muddy sediment in the Ria de Vigo (NW Iberian coastal upwelling), by applying the aquatic eddy covariance (AEC) technique during 2 campaigns in different seasons (June and October 2017). The main drivers of benthic fluxes were studied and compared among days in each season and between seasons. The 2 campaigns were characterized by an upwelling-relaxation period followed by a downwelling event, the last of which was due to the extratropical cyclone Ophelia in October. The mean (±SD) seasonal benthic oxygen fluxes were not significantly different for the 2 campaigns despite differences in hydrodynamic and biogeochemical conditions (June: -20.9 ± 7.1 mmol m -2 d -1 vs. October: -26.5 ± 3.1 mmol m -2 d -1 ). Benthic fluxes were controlled by different drivers depending on the season. June was characterized by sinking labile organic material, which enhanced benthic fluxes in the downwelling event, whereas October had a significantly higher bottom velocity that stimulated the benthic fluxes. Finally, a comparison with a large benthic chamber (0.50 m 2 ) was made during October. Despite methodological differences between AEC and chamber measurements, concurrent fluxes agreed within an acceptable margin (AEC:benthic chamber ratio = 0.78 ± 0.13; mean ± SD). Bottle incubations of water sampled from the chamber interior indicated that mineralization could explain this difference. These results show the importance of using non-invasive techniques such as AEC to resolve benthic flux dynamics. 
    more » « less