skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Self‐Assembled Metal–Dielectric Hybrid Metamaterials in Vertically Aligned Nanocomposite Form with Tailorable Optical Properties and Coupled Multifunctionalities
Metal–dielectric hybrid metamaterials have attracted increasing research interest in recent years because of their novel optical properties and promising applications in the fields of electronic and photonic devices. Dielectric permittivity is a key parameter that strongly influences the optical properties of materials. By self‐assembling the metallic and dielectric components in a pillar‐in‐matrix structure, a strong anisotropic structure forms and results in opposite signs of permittivity components (i.e.,ε|| > 0 andε < 0, or vice versa) and exotic optical responses including hyperbolic dispersion in the visible to near‐infrared region. Herein, the main approaches of tuning the permittivity in self‐assembled metal–dielectric vertically aligned nanocomposite (VAN) thin films are reviewed, including tuning the metal pillar density and geometry, film strain state and background pressure during growth, and seeking other metal‐free and complex structure designs. Future research directions are also proposed, including unique approaches to improve their thermal stability, integrate on flexible substrates toward wearable device fabrication, and explore real‐time tunable metamaterials.  more » « less
Award ID(s):
2016453 1565822
PAR ID:
10216622
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Photonics Research
Volume:
2
Issue:
5
ISSN:
2699-9293
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A phase transition material, VO 2 , with a semiconductor-to-metal transition (SMT) near 341 K (68 °C) has attracted significant research interest because of drastic changes in its electrical resistivity and optical dielectric properties. To address its application needs at specific temperatures, tunable SMT temperatures are highly desired. In this work, effective transition temperature ( T c ) tuning of VO 2 has been demonstrated via a novel Pt : VO 2 nanocomposite design, i.e. , uniform Pt nanoparticles (NPs) embedded in the VO 2 matrix. Interestingly, a bidirectional tuning has been achieved, i.e. , the transition temperature can be systematically tuned to as low as 329.16 K or as high as 360.74 K, with the average diameter of Pt NPs increasing from 1.56 to 4.26 nm. Optical properties, including transmittance ( T %) and dielectric permittivity ( ε ′) were all effectively tuned accordingly. All Pt : VO 2 nanocomposite thin films maintain reasonable SMT properties, i.e. sharp phase transition and narrow width of thermal hysteresis. The bidirectional T c tuning is attributed to two factors: the reconstruction of the band structure at the Pt : VO 2 interface and the change of the Pt : VO 2 phase boundary density. This demonstration sheds light on phase transition tuning of VO 2 at both room temperature and high temperature, which provides a promising approach for VO 2 -based novel electronics and photonics operating under specific temperatures. 
    more » « less
  2. Abstract Integration of nanoscale photonic and plasmonic components on Si substrates is a critical step toward Si‐based integrated nanophotonic devices. In this work, a set of unique complex 3D metamaterials with intercalated nanolayered and nanopillar structures with tunable plasmonic and optical properties on Si substrates is designed. More specifically, the 3D metamaterials combine metal (Au) nanopillars and alternating metal‐nitride (Au‐TiN and Au‐TaN) nanolayers, epitaxially grown on Si substrates. The ultrafine Au nanopillars (d≈ 3 nm) continuously grow throughout all the nanolayers with high epitaxial quality. Novel optical properties, such as highly anisotropic optical property, high absorbance covering the entire visible spectrum regime, and hyperbolic property in the visible regime, are demonstrated. Furthermore, a waveguide based on a silicon nitride (Si3N4) ridge with a multilayer structure is successfully fabricated. The demonstration of 3D nanoscale metamaterial design integrated on Si opens up a new route toward tunable metamaterials nanostructure designs with versatile material selection for various optical components in Si integrated photonics. 
    more » « less
  3. Abstract Hyperbolic metamaterials (HMM) possess significant anisotropic physical properties and tunability and thus find many applications in integrated photonic devices. HMMs consisting of metal and dielectric phases in either multilayer or vertically aligned nanocomposites (VAN) form are demonstrated with different hyperbolic properties. Herein, self‐assembled HfO2‐Au/TiN‐Au multilayer thin films, combining both the multilayer and VAN designs, are demonstrated. Specifically, Au nanopillars embedded in HfO2and TiN layers forming the alternative layers of HfO2‐Au VAN and TiN‐Au VAN. The HfO2and TiN layer thickness is carefully controlled by varying laser pulses during pulsed laser deposition (PLD). Interestingly, tunable anisotropic physical properties can be achieved by adjusting the bi‐layer thickness and the number of the bi‐layers. Type II optical hyperbolic dispersion can be obtained from high layer thickness structure (e.g., 20 nm), while it can be transformed into Type I optical hyperbolic dispersion by reducing the thickness to a proper value (e.g., 4 nm). This new nanoscale hybrid metamaterial structure with the three‐phase VAN design shows great potential for tailorable optical components in future integrated devices. 
    more » « less
  4. Recently, the application of transition metal mononitrides (TMNs) to plasmonics and nonlinear optics has grown at an astounding rate. TiN and ZrN have emerged as the dominating materials in this direction. However, even though ZrN is reported to have lower dielectric losses and enhanced tunability in plasmonic applications when compared with TiN, the body of work regarding TiN is much more mature than that of ZrN. This imbalance of work regarding ZrN may be in part an effect of pollution in precursor materials for the fabrication of ZrN, leading to an increased imaginary part of permittivity and frustration in reproduction of ZrN with literature‐like properties. Herein, the effects of Hf defects (a common pollutant in Zr) on the optical properties of nitride films grown with radio frequency (RF) magnetron sputtering are reported. Hf defects are introduced into nitride films with a sputtering target made of the Hf‐polluted “grade 702” Zr alloy. Hf defects are found in all analyzed films with concentrations at around ≈0.5−1 at %. Chemical, structural, and optical properties of RF magnetron‐sputtered Hfx:ZryNzfilms (x ≪ y,z) are characterized and discussed. 
    more » « less
  5. Abstract Mott insulator VO2exhibits an ultrafast and reversible semiconductor‐to‐metal transition (SMT) near 340 K (67 °C). In order to fulfill the multifunctional device applications, effective transition temperature (Tc) tuning as well as integrated functionality in VO2is desired. In this study, multifunctionalities including tailorable SMT characteristics, ferromagnetic (FM) integration, and magneto‐optical (MO) coupling, have been demonstrated via metal/VO2nanocomposite designs with controlled morphology, i.e., a two‐phase Ni/VO2pillar‐in‐matrix geometry and a three‐phase Au/Ni/VO2particle‐in‐matrix geometry. EvidentTcreduction of 20.4 to 54.9 K has been achieved by morphology engineering. Interestingly, the Au/Ni/VO2film achieves a record‐lowTcof 295.2 K (22.2 °C), slightly below room temperature (25 °C). The change in film morphology is also correlated with unique property tuning. Highly anisotropic magnetic and optical properties have been demonstrated in Ni/VO2film, whereas Au/Ni/VO2film exhibits isotropic properties because of the uniform distribution of Au/Ni nanoparticles. Furthermore, a strong MO coupling with enhanced magnetic coercivity and anisotropy is demonstrated for both films, indicating great potential for optically active property tuning. This demonstration opens exciting opportunities for the VO2‐based device implementation towards smart windows, next‐generation optical‐coupled switches, and spintronic devices. 
    more » « less