skip to main content


Title: Dynamic Construction, Perception, and Remodeling of Plant Cell Walls
Plant cell walls are dynamic structures that are synthesized by plants to provide durable coverings for the delicate cells they encase. They are made of polysaccharides, proteins, and other biomolecules and have evolved to withstand large amounts of physical force and to resist external attack by herbivores and pathogens but can in many cases expand, contract, and undergo controlled degradation and reconstruction to facilitate developmental transitions and regulate plant physiology and reproduction. Recent advances in genetics, microscopy, biochemistry, structural biology, and physical characterization methods have revealed a diverse set of mechanisms by which plant cells dynamically monitor and regulate the composition and architecture of their cell walls, but much remains to be discovered about how the nanoscale assembly of these remarkable structures underpins the majestic forms and vital ecological functions achieved by plants.  more » « less
Award ID(s):
1856431
NSF-PAR ID:
10216727
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Annual Review of Plant Biology
Volume:
71
Issue:
1
ISSN:
1543-5008
Page Range / eLocation ID:
39 to 69
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Central metabolism is organised through high‐flux, Nicotinamide Adenine Dinucleotide (NAD+/NADH) and NADP+/NADPH systems operating at near equilibrium. As oxygen is indispensable for aerobic organisms, these systems are also linked to the levels of reactive oxygen species, such as H2O2, and through H2O2to the regulation of macromolecular structures and activities, via kinetically controlled sulphur switches in the redox proteome. Dynamic changes in H2O2production, scavenging and transport, associated with development, growth and responses to the environment are, therefore, linked to the redox state of the cell and regulate cellular function. These basic principles form the ‘redox code’ of cells and were first defined by D. P. Jones and H. Sies in 2015. Here, we apply these principles to plants in which recent studies have shown that they can also explain cell‐to‐cell and even plant‐to‐plant signalling processes. The redox code is, therefore, an integral part of biological systems and can be used to explain multiple processes in plants at the subcellular, cellular, tissue, whole organism and perhaps even community and ecosystem levels. As the environmental conditions on our planet are worsening due to global warming, climate change and increased pollution levels, new studies are needed applying the redox code of plants to these changes.

     
    more » « less
  2. SUMMARY

    Plant cells and organs grow into a remarkable diversity of shapes, as directed by cell walls composed primarily of polysaccharides such as cellulose and multiple structurally distinct pectins. The properties of the cell wall that allow for precise control of morphogenesis are distinct from those of the individual polysaccharide components. For example, cellulose, the primary determinant of cell morphology, is a chiral macromolecule that can self‐assemblein vitrointo larger‐scale structures of consistent chirality, and yet most plant cells do not display consistent chirality in their growth. One interesting exception is theArabidopsis thaliana rhm1mutant, which has decreased levels of the pectin rhamnogalacturonan‐I and causes conical petal epidermal cells to grow with a left‐handed helical twist. Here, we show that inrhm1the cellulose is bundled into large macrofibrils, unlike the evenly distributed microfibrils of the wild type. This cellulose bundling becomes increasingly severe over time, consistent with cellulose being synthesized normally and then self‐associating into macrofibrils. We also show that in the wild type, cellulose is oriented transversely, whereas inrhm1mutants, the cellulose forms right‐handed helices that can account for the helical morphology of the petal cells. Our results indicate that when the composition of pectin is altered, cellulose can form cellular‐scale chiral structuresin vivo, analogous to the helicoids formedin vitroby cellulose nano‐crystals. We propose that an important emergent property of the interplay between rhamnogalacturonan‐I and cellulose is to permit the assembly of nonbundled cellulose structures, providing plants flexibility to orient cellulose and direct morphogenesis.

     
    more » « less
  3. ABSTRACT

    Periderm is a well‐known structural feature with vital roles in protection of inner plant tissues and wound healing. Despite its importance to plant survival, knowledge of periderm occurrences outside the seed plants is limited and the evolutionary origins of periderm remain poorly explored. Here, we review the current knowledge of the taxonomic distribution of periderm in its two main forms – canonical periderm (periderm formed as a typical ontogenetic stage) and wound periderm (periderm produced as a self‐repair mechanism) – with a focus on major plant lineages, living and extinct. We supplement the published occurrences with data based on our own observations and experiments. This updated body of data reveals that the distribution of wound periderm is more widespread taxonomically than previously recognized and some living and extinct groups are capable of producing wound periderm, despite canonical periderm being absent from their normal developmental program. A critical review of canonical and wound periderms in extant and fossil lineages indicates that not all periderms are created equal. Their organisation is widely variable and the differences can be characterised in terms of variations in three structural features: (i) the consistency in orientation of periclinal walls within individual files of periderm cells; (ii) the lateral coordination of periclinal walls between adjacent cell files; and (iii) whether a cambial layer and conspicuous layering of inward and outward derivatives can be distinguished. Using a new system of scoring periderm structure based on these criteria, we characterise the level of organisation of canonical and wound periderms in different lineages. Looking at periderms through the lens provided by their level of organisation reveals that the traditional image of periderm as a single generalised feature, is best viewed as a continuum of structural configurations that are all predicated by the same basic process (periclinal divisions), but can fall anywhere between very loosely organized (diffuse periclinal growth) to very tightly coordinated (organized periclinal growth). Overall, wound periderms in both seed plants and seed‐free plants have lower degrees of organisation than canonical periderms, which may be due to their initiation in response to inherently disruptive traumatic events. Wound and canonical periderms of seed plants have higher degrees of organisation than those of seed‐free plants, possibly due to co‐option of the programs responsible for organizing their vascular cambial growth. Given the importance of wound periderm to plant survival, its widespread taxonomic distribution, and its early occurrence in the fossil record, we hypothesise that wound periderm may have had a single origin in euphyllophytes and canonical periderm may have originated separately in different lineages by co‐option of the basic regulatory toolkit of wound periderm formation. In one evolutionary scenario, wound periderm regulators activated initially by tissue tearing due to tensional stresses elicited by woody growth underwent heterochronic change that switched their activation trigger from tissue tearing to the tensional stresses that precede it, with corresponding changes in the signalling that triggered the regulatory cascade of periderm development from tearing‐induced signals to signalling induced by tension in cells.

     
    more » « less
  4. In contrast to predictions from nitrogen limitation theory, recent studies have shown that herbivorous migratory insects tend to be carbohydrate (not protein) limited, likely due to increased energy demands, leading them to preferentially feed on high carbohydrate plants. However, additional factors such as mechanical and chemical defenses can also influence host plant choice and nutrient accessibility. In this study, we investigated the effects of plant protein and carbohydrate availability on plant selection and performance for a migratory generalist herbivore, the Australian plague locust, Chortoicetes terminifera. We manipulated the protein and carbohydrate content of seedling wheat ( Triticum aestivum L. ) by increasing the protein:carbohydrate ratio using nitrogen (N) fertilizer, and manipulated the physical structure of the plants by grinding and breaking down cell walls after drying the plants. Using a full factorial design, we ran both choice and no-choice experiments to measure preference and performance. We confirmed locust preference for plants with a lower protein-carbohydrate ratio (unfertilized plants). Unlike previous studies with mature wild grass species, we found that intact plants supported better performance than dried and ground plants, suggesting that cell wall removal may only improve performance for tougher or more carbohydrate-rich plants. These results add to the growing body of evidence suggesting that several migratory herbivorous species perform better on plants with a lower protein:carbohydrate ratio. 
    more » « less
  5. Abstract To survive in the nutrient-poor habitats, carnivorous plants capture small organisms comprising complex substances not suitable for immediate reuse. The traps of carnivorous plants, which are analogous to the digestive systems of animals, are equipped with mechanisms for the breakdown and absorption of nutrients. Such capabilities have been acquired convergently over the past tens of millions of years in multiple angiosperm lineages by modifying plant-specific organs including leaves. The epidermis of carnivorous trap leaves bears groups of specialized cells called glands, which acquire substances from their prey via digestion and absorption. The digestive glands of carnivorous plants secrete mucilage, pitcher fluids, acids, and proteins, including digestive enzymes. The same (or morphologically distinct) glands then absorb the released compounds via various membrane transport proteins or endocytosis. Thus, these glands function in a manner similar to animal cells that are physiologically important in the digestive system, such as the parietal cells of the stomach and intestinal epithelial cells. Yet, carnivorous plants are equipped with strategies that deal with or incorporate plant-specific features, such as cell walls, epidermal cuticles, and phytohormones. In this review, we provide a systematic perspective on the digestive and absorptive capacity of convergently evolved carnivorous plants, with an emphasis on the forms and functions of glands. 
    more » « less