skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Domain Adaptation for Ultrasound Beamforming
Ultrasound B-Mode images are created from data obtained from each element in the transducer array in a process called beamforming. The beamforming goal is to enhance signals from specified spatial locations, while reducing signal from all other locations. On clinical systems, beamforming is accomplished with the delay-and-sum (DAS) algorithm. DAS is efficient but fails in patients with high noise levels, so various adaptive beamformers have been proposed. Recently, deep learning methods have been developed for this task. With deep learning methods, beamforming is typically framed as a regression problem, where clean, ground-truth data is known, and usually simulated. For in vivo data, however, it is extremely difficult to collect ground truth information, and deep networks trained on simulated data underperform when applied to in vivo data, due to domain shift between simulated and in vivo data. In this work, we show how to correct for domain shift by learning deep network beamformers that leverage both simulated data, and unlabeled in vivo data, via a novel domain adaption scheme. A challenge in our scenario is that domain shift exists both for noisy input, and clean output. We address this challenge by extending cycle-consistent generative adversarial networks, where we leverage maps between synthetic simulation and real in vivo domains to ensure that the learned beamformers capture the distribution of both noisy and clean in vivo data. We obtain consistent in vivo image quality improvements compared to existing beamforming techniques, when applying our approach to simulated anechoic cysts and in vivo liver data.  more » « less
Award ID(s):
1750994
PAR ID:
10216938
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
MICCAI 2020: Medical Image Computing and Computer Assisted Intervention – MICCAI 2020
Volume:
12262
Page Range / eLocation ID:
410-420
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We evaluated training deep neural network (DNN) beamformers for the task of high contrast imaging in the presence of reverberation clutter. Training data was generated using simulated hypoechoic cysts and a pseudo nonlinear method for generating reverberation clutter. Performance was compared to standard delay-and-sum (DAS) beamforming on simulated hypoechoic cysts having a different size. For a hypoechoic cyst in the presence of reverberation clutter, when the intrinsic contrast ratio (CR) was -10 dB and -20 dB, the measured CR for DAS beamforming was -9.2±0.8 dB and -14.3±0.5 dB, respectively, and the measured CR for DNNs was -10.7±1.4 dB and -20.0±1.0 dB, respectively. For a hypoechoic cyst with -20 dB intrinsic CR, the contrast-to-noise ratio (CNR) was 3.4±0.3 dB and 4.3±0.3 dB for DAS and DNN beamforming, respectively. These results show that DNN beamforming was able to extend contrast ratio dynamic range (CRDR) by about 10 dB while also improving CNR. 
    more » « less
  2. Unsupervised denoising is a crucial challenge in real-world imaging applications. Unsupervised deep-learning methods have demonstrated impressive performance on benchmarks based on synthetic noise. However, no metrics are available to evaluate these methods in an unsupervised fashion. This is highly problematic for the many practical applications where ground-truth clean images are not available. In this work, we propose two novel metrics: the unsupervised mean squared error (MSE) and the unsupervised peak signal-to-noise ratio (PSNR), which are computed using only noisy data. We provide a theoretical analysis of these metrics, showing that they are asymptotically consistent estimators of the supervised MSE and PSNR. Controlled numerical experiments with synthetic noise confirm that they provide accurate approximations in practice. We validate our approach on real-world data from two imaging modalities: videos in raw format and transmission electron microscopy. Our results demonstrate that the proposed metrics enable unsupervised evaluation of denoising methods based exclusively on noisy data. 
    more » « less
  3. Unsupervised denoising is a crucial challenge in real-world imaging applications. Unsupervised deep-learning methods have demonstrated impressive performance on benchmarks based on synthetic noise. However, no metrics are available to evaluate these methods in an unsupervised fashion. This is highly problematic for the many practical applications where ground-truth clean images are not available. In this work, we propose two novel metrics: the unsupervised mean squared error (MSE) and the unsupervised peak signal-to-noise ratio (PSNR), which are computed using only noisy data. We provide a theoretical analysis of these metrics, showing that they are asymptotically consistent estimators of the supervised MSE and PSNR. Controlled numerical experiments with synthetic noise confirm that they provide accurate approximations in practice. We validate our approach on real-world data from two imaging modalities: videos in raw format and transmission electron microscopy. Our results demonstrate that the proposed metrics enable unsupervised evaluation of denoising methods based exclusively on noisy data. 
    more » « less
  4. Unsupervised denoising is a crucial challenge in real-world imaging applications. Unsupervised deep-learning methods have demonstrated impressive performance on benchmarks based on synthetic noise. However, no metrics exist to evaluate these methods in an unsupervised fashion. This is highly problematic for the many practical applications where ground-truth clean images are not available. In this work, we propose two novel metrics: the unsupervised mean squared error (MSE) and the unsupervised peak signalto-noise ratio (PSNR), which are computed using only noisy data. We provide a theoretical analysis of these metrics, showing that they are asymptotically consistent estimators of the supervised MSE and PSNR. Controlled numerical experiments with synthetic noise confirm that they provide accurate approximations in practice. We validate our approach on real-world data from two imaging modalities: videos in raw format and transmission electron microscopy. Our results demonstrate that the proposed metrics enable unsupervised evaluation of denoising methods based exclusively on noisy data. 
    more » « less
  5. Abstract Distributed Acoustic Sensing (DAS) is an emerging technology for earthquake monitoring and subsurface imaging. However, its distinct characteristics, such as unknown ground coupling and high noise level, pose challenges to signal processing. Existing machine learning models optimized for conventional seismic data struggle with DAS data due to its ultra-dense spatial sampling and limited manual labels. We introduce a semi-supervised learning approach to address the phase-picking task of DAS data. We use the pre-trained PhaseNet model to generate noisy labels of P/S arrivals in DAS data and apply the Gaussian mixture model phase association (GaMMA) method to refine these noisy labels and build training datasets. We develop PhaseNet-DAS, a deep learning model designed to process 2D spatio-temporal DAS data to achieve accurate phase picking and efficient earthquake detection. Our study demonstrates a method to develop deep learning models for DAS data, unlocking the potential of integrating DAS in enhancing earthquake monitoring. 
    more » « less