skip to main content

Title: On Light Spanners, Low-treewidth Embeddings and Efficient Traversing in Minor-free Graphs
Understanding the structure of minor-free metrics, namely shortest path metrics obtained over a weighted graph excluding a fixed minor, has been an important research direction since the fundamental work of Robertson and Seymour. A fundamental idea that helps both to understand the structural properties of these metrics and lead to strong algorithmic results is to construct a “small-complexity” graph that approximately preserves distances between pairs of points of the metric. We show the two following structural results for minor-free metrics: 1) Construction of a light subset spanner. Given a subset of vertices called terminals, and ϵ, in polynomial time we construct a sub graph that preserves all pairwise distances between terminals up to a multiplicative 1+ϵ factor, of total weight at most Oϵ(1) times the weight of the minimal Steiner tree spanning the terminals. 2) Construction of a stochastic metric embedding into low treewidth graphs with expected additive distortion ϵD. Namely, given a minor-free graph G=(V,E,w) of diameter D, and parameter ϵ, we construct a distribution D over dominating metric embeddings into treewidth-Oϵ(log n) graphs such that ∀u,v∈V, Ef∼D[dH(f(u),f(v))]≤dG(u,v)+ϵD. Our results have the following algorithmic consequences: (1) the first efficient approximation scheme for subset TSP in minor-free metrics; (2) the more » first approximation scheme for bounded-capacity vehicle routing in minor-free metrics; (3) the first efficient approximation scheme for bounded-capacity vehicle routing on bounded genus metrics. En route to the latter result, we design the first FPT approximation scheme for bounded-capacity vehicle routing on bounded-treewidth graphs (parameterized by the treewidth). « less
; ; ;
Award ID(s):
Publication Date:
Journal Name:
Proceedings of the 61st Annual IEEE Symposium on Foundations of Computer Science
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. The Capacitated Vehicle Routing problem is to find a minimum-cost set of tours that collectively cover clients in a graph, such that each tour starts and ends at a specified depot and is subject to a capacity bound on the number of clients it can serve. In this paper, we present a polynomial-time approximation scheme (PTAS) for instances in which the input graph is planar and the capacity is bounded. Previously, only a quasipolynomial-time approximation scheme was known for these instances. To obtain this result, we show how to embed planar graphs into bounded-treewidth graphs while preserving, in expectation, themore »client-to-client distances up to a small additive error proportional to client distances to the depot.« less
  2. Graph compression or sparsification is a basic information-theoretic and computational question. A major open problem in this research area is whether $(1+\epsilon)$-approximate cut-preserving vertex sparsifiers with size close to the number of terminals exist. As a step towards this goal, we initiate the study of a thresholded version of the problem: for a given parameter $c$, find a smaller graph, which we call \emph{connectivity-$c$ mimicking network}, which preserves connectivity among $k$ terminals exactly up to the value of $c$. We show that connectivity-$c$ mimicking networks of size $O(kc^4)$ exist and can be found in time $m(c\log n)^{O(c)}$. We also givemore »a separate algorithm that constructs such graphs of size $k \cdot O(c)^{2c}$ in time $mc^{O(c)}\log^{O(1)}n$. These results lead to the first offline data structures for answering fully dynamic $c$-edge-connectivity queries for $c \ge 4$ in polylogarithmic time per query as well as more efficient algorithms for survivable network design on bounded treewidth graphs.« less
  3. A graph spanner is a fundamental graph structure that faithfully preserves the pairwise distances in the input graph up to a small multiplicative stretch. The common objective in the computation of spanners is to achieve the best-known existential size-stretch trade-off efficiently. Classical models and algorithmic analysis of graph spanners essentially assume that the algorithm can read the input graph, construct the desired spanner, and write the answer to the output tape. However, when considering massive graphs containing millions or even billions of nodes not only the input graph, but also the output spanner might be too large for a singlemore »processor to store. To tackle this challenge, we initiate the study of local computation algorithms (LCAs) for graph spanners in general graphs, where the algorithm should locally decide whether a given edge (u,v)∈E belongs to the output spanner. Such LCAs give the user the `illusion' that a specific sparse spanner for the graph is maintained, without ever fully computing it. We present the following results: -For general n-vertex graphs and r∈{2,3}, there exists an LCA for (2r−1)-spanners with O˜(n1+1/r) edges and sublinear probe complexity of O˜(n1−1/2r). These size/stretch tradeoffs are best possible (up to polylogarithmic factors). -For every k≥1 and n-vertex graph with maximum degree Δ, there exists an LCA for O(k2) spanners with O˜(n1+1/k) edges, probe complexity of O˜(Δ4n2/3), and random seed of size polylog(n). This improves upon, and extends the work of [Lenzen-Levi, 2018]. We also complement our results by providing a polynomial lower bound on the probe complexity of LCAs for graph spanners that holds even for the simpler task of computing a sparse connected subgraph with o(m) edges.« less
  4. Given a graph G = (V, E) and a subset T ⊆ V of terminals, a Steiner tree of G is a tree that spans T. In the vertex-weighted Steiner tree (VST) problem, each vertex is assigned a non-negative weight, and the goal is to compute a minimum weight Steiner tree of G. Vertex-weighted problems have applications in network design and routing, where there are different costs for installing or maintaining facilities at different vertices. We study a natural generalization of the VST problem motivated by multi-level graph construction, the vertex-weighted grade-of-service Steiner tree problem (V-GSST), which can be statedmore »as follows: given a graph G and terminals T, where each terminal v ∈ T requires a facility of a minimum grade of service R(v) ∈ {1, 2, . . . `}, compute a Steiner tree G0 by installing facilities on a subset of vertices, such that any two vertices requiring a certain grade of service are connected by a path in G 0 with the minimum grade of service or better. Facilities of higher grade are more costly than facilities of lower grade. Multi-level variants such as this one can be useful in network design problems where vertices may require facilities of varying priority. While similar problems have been studied in the edge-weighted case, they have not been studied as well in the more general vertex-weighted case. We first describe a simple heuristic for the V-GSST problem whose approximation ratio depends on `, the number of grades of service. We then generalize the greedy algorithm of [Klein & Ravi, 1995] to show that the V-GSST problem admits a (2 ln |T|)-approximation, where T is the set of terminals requiring some facility. This result is surprising, as it shows that the (seemingly harder) multi-grade problem can be approximated as well as the VST problem, and that the approximation ratio does not depend on the number of grades of service. Finally, we show that this problem is a special case of the directed Steiner tree problem and provide an integer linear programming (ILP) formulation for the V-GSST problem.« less
  5. Constructing a spanning tree of a graph is one of the most basic tasks in graph theory. We consider a relaxed version of this problem in the setting of local algorithms. The relaxation is that the constructed subgraph is a sparse spanning subgraph containing at most (1+ϵ)n edges (where n is the number of vertices and ϵ is a given approximation/sparsity parameter). In the local setting, the goal is to quickly determine whether a given edge e belongs to such a subgraph, without constructing the whole subgraph, but rather by inspecting (querying) the local neighborhood of e. The challenge ismore »to maintain consistency. That is, to provide answers concerning different edges according to the same spanning subgraph. We first show that for general bounded-degree graphs, the query complexity of any such algorithm must be Ω(n−−√). This lower bound holds for constant-degree graphs that have high expansion. Next we design an algorithm for (bounded-degree) graphs with high expansion, obtaining a result that roughly matches the lower bound. We then turn to study graphs that exclude a fixed minor (and are hence non-expanding). We design an algorithm for such graphs, which may have an unbounded maximum degree. The query complexity of this algorithm is poly(1/ϵ,h) (independent of n and the maximum degree), where h is the number of vertices in the excluded minor. Though our two algorithms are designed for very different types of graphs (and have very different complexities), on a high-level there are several similarities, and we highlight both the similarities and the differences.« less