skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Periodic solutions of an age-structured epidemic model with periodic infection rate
Award ID(s):
1853622
PAR ID:
10217326
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Communications on Pure & Applied Analysis
Volume:
19
Issue:
10
ISSN:
1553-5258
Page Range / eLocation ID:
4955 to 4972
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Chambers, Erin W; Gudmundsson, Joachim (Ed.)
    We present an educational web app for interactively drawing and editing 2D periodic graphs. The user defines the unit cell and the finite set of vertex and edge representatives, from which a sufficiently large fragment of the periodic graph is created for the visualization. The periodic graph can also be modified by applying several transformations, including isometries and relaxations of the unit cell. A finite representation of the infinite periodic graph can be saved in an external file as a quotient graph with Z²-marked edges. Its geometry is recorded using fractional (crystallographic) coordinates. The facial structure of non-crossing periodic graphs can be revealed by the user interactively selecting face representatives. An accompanying video demonstrates the functionality of the web application. 
    more » « less
  2. A periodic surface is one that is invariant by a two-dimensional lattice of translations. Deformation modes that stretch the lattice without stretching the surface are effective membrane modes. Deformation modes that bend the lattice without stretching the surface are effective bending modes. For periodic piecewise smooth simply connected surfaces, it is shown that the effective membrane modes are, in a sense, orthogonal to effective bending modes. This means that if a surface gains a membrane mode, it loses a bending mode, and conversely, in such a way that the total number of modes, membrane and bending combined, can never exceed 3. Various examples, inspired from curved-crease origami tessellations, illustrate the results. This article is part of the theme issue ‘Origami/Kirigami-inspired structures: from fundamentals to applications’. 
    more » « less