skip to main content


Search for: All records

Award ID contains: 1853622

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Recent experimental evidence suggests that spatial heterogeneity plays an important role in within‐host infections caused by different viruses including hepatitis B virus (HBV), hepatitis C virus (HCV), and human immunodeficiency virus (HIV). To examine the spatial effects of viral infections, in this paper we study the asymptotic spreading in a within‐host viral infection model, which describes the spatial expansion speeds of viruses and infected cells within an infected host. We first establish the boundedness of solutions to the Cauchy problem via local ‐estimates and dual arguments. Then the spreading speed is estimated when the basic reproduction number of the corresponding kinetic system is larger than one. More precisely, the upper bounds of the spreading speed are given by constructing suitable upper solutions while the lower bounds of the spreading speed are obtained by introducing an auxiliary equation with nonlocal delay. When the basic reproduction number of the corresponding kinetic system is less than or equal to one, the virus dies out uniformly. Finally, we present some numerical simulations to illustrate our theoretical findings and discuss the biological relevance of these results.

     
    more » « less
  2. Free, publicly-accessible full text available September 1, 2024
  3. Free, publicly-accessible full text available May 1, 2024
  4. Vector-borne diseases, such as chikungunya, dengue, malaria, West Nile virus, yellow fever and Zika, pose a major global public health problem worldwide. In this paper we investigate the propagation dynamics of diffusive vector-borne disease models in the whole space, which characterize the spatial expansion of the infected hosts and infected vectors. Due to the lack of monotonicity, the comparison principle cannot be applied directly to this system. We determine the spreading speed and minimal wave speed when the basic reproduction number of the corresponding kinetic system is larger than one. The spreading speed is mainly estimated by the uniform persistence argument and generalized principal eigenvalue. We also show that solutions converge locally uniformly to the positive equilibrium by employing two auxiliary monotone systems. Moreover, it is proven that the spreading speed is the minimal wave speed of travelling wave solutions. In particular, the uniqueness and monotonicity of travelling waves are obtained. When the basic reproduction number of the corresponding kinetic system is not larger than one, it is shown that solutions approach to the disease-free equilibrium uniformly and there is no travelling wave solutions. Finally, numerical simulations are presented to illustrate the analytical results. 
    more » « less
  5. We study the effect of population mobility on the transmission dynamics of infectious diseases by considering a susceptible-exposed-infectious-recovered (SEIR) epidemic model with graph Laplacian diffusion, that is, on a weighted network. First, we establish the existence and uniqueness of solutions to the SEIR model defined on a weighed graph. Then by constructing Liapunov functions, we show that the disease-free equilibrium is globally asymptotically stable if the basic reproduction number is less than unity and the endemic equilibrium is globally asymptotically stable if the basic reproduction number is greater than unity. Finally, we apply our generalized weighed graph to Watts–Strogatz network and carry out numerical simulations, which demonstrate that degrees of nodes determine peak numbers of the infectious population as well as the time to reach these peaks. It also indicates that the network has an impact on the transient dynamical behaviour of the epidemic transmission. 
    more » « less
  6. Abstract Background The COVID-19 outbreak in Wuhan started in December 2019 and was under control by the end of March 2020 with a total of 50,006 confirmed cases by the implementation of a series of nonpharmaceutical interventions (NPIs) including unprecedented lockdown of the city. This study analyzes the complete outbreak data from Wuhan, assesses the impact of these public health interventions, and estimates the asymptomatic, undetected and total cases for the COVID-19 outbreak in Wuhan. Methods By taking different stages of the outbreak into account, we developed a time-dependent compartmental model to describe the dynamics of disease transmission and case detection and reporting. Model coefficients were parameterized by using the reported cases and following key events and escalated control strategies. Then the model was used to calibrate the complete outbreak data by using the Monte Carlo Markov Chain (MCMC) method. Finally we used the model to estimate asymptomatic and undetected cases and approximate the overall antibody prevalence level. Results We found that the transmission rate between Jan 24 and Feb 1, 2020, was twice as large as that before the lockdown on Jan 23 and 67.6 % (95% CI [0.584,0.759]) of detectable infections occurred during this period. Based on the reported estimates that around 20% of infections were asymptomatic and their transmission ability was about 70% of symptomatic ones, we estimated that there were about 14,448 asymptomatic and undetected cases (95% CI [12,364,23,254]), which yields an estimate of a total of 64,454 infected cases (95% CI [62,370,73,260]), and the overall antibody prevalence level in the population of Wuhan was 0.745% (95% CI [0.693 % ,0.814 % ]) by March 31, 2020. Conclusions We conclude that the control of the COVID-19 outbreak in Wuhan was achieved via the enforcement of a combination of multiple NPIs: the lockdown on Jan 23, the stay-at-home order on Feb 2, the massive isolation of all symptomatic individuals via newly constructed special shelter hospitals on Feb 6, and the large scale screening process on Feb 18. Our results indicate that the population in Wuhan is far away from establishing herd immunity and provide insights for other affected countries and regions in designing control strategies and planing vaccination programs. 
    more » « less