skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Further insights into the thermodynamics of the Kitaev honeycomb model
Here we revisit the thermodynamics of the Kitaev quantum spin liquid realized on the honeycomb lattice. We address two main questions: First, we investigate whether there are observable thermodynamic signatures of the topological Majorana boundary modes of the Kitaev honeycomb model. We argue that for the time-reversal invariant case the residual low-temperature entropy is the primary thermodynamic signature of these Majorana edge modes. Using large-scale Monte Carlo simulations, we verify that this residual entropy is present in the full Kitaev model. When time-reversal symmetry is broken, the Majorana edge modes are potentially observable in more direct thermodynamic measurements such as the specific heat, though only at temperatures well below the bulk gap. Second, we study the energetics, and the corresponding thermodynamic signatures, of the flux excitations in the Kitaev model. Specifically, we study the flux interactions on both cylinder and torus geometries numerically and quantify their impact on the thermodynamics of the Kitaev spin liquid by using a polynomial fit for the average flux energy as a function of flux density and extrapolating it to the thermodynamic limit. By comparing this model to Monte Carlo simulations, we find that flux interactions have a significant quantitative impact on the shape and the position of the low-temperature peak in the specific heat.  more » « less
Award ID(s):
1929311
PAR ID:
10217348
Author(s) / Creator(s):
Date Published:
Journal Name:
PRB
Volume:
102
ISSN:
2161-2684
Page Range / eLocation ID:
224402
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The Kitaev honeycomb model has attracted significant attention due to its exactly solvable spin-liquid ground state with fractionalized Majorana excitations and its possible materialization in magnetic Mott insulators with strong spin-orbit couplings. Recently, the 5d-electron compound H3LiIr2O6 has shown to be a strong candidate for Kitaev physics considering the absence of any signs of a long-range ordered magnetic state. In this work, we demonstrate that a finite density of random vacancies in the Kitaev model gives rise to a striking pileup of low-energy Majorana eigenmodes and reproduces the apparent power-law upturn in the specific heat measurements of H3LiIr2O6. Physically, the vacancies can originate from various sources such as missing magnetic moments or the presence of nonmagnetic impurities (true vacancies), or from local weak couplings of magnetic moments due to strong but rare bond randomness (quasivacancies). We show numerically that the vacancy effect is readily detectable even at low vacancy concentrations and that it is not very sensitive either to the nature of vacancies or to different flux backgrounds. We also study the response of the site-diluted Kitaev spin liquid to the three-spin interaction term, which breaks time-reversal symmetry and imitates an external magnetic field. We propose a field-induced flux-sector transition where the ground state becomes flux-free for larger fields, resulting in a clear suppression of the low-temperature specific heat. Finally, we discuss the effect of dangling Majorana fermions in the case of true vacancies and show that their coupling to an applied magnetic field via the Zeeman interaction can also account for the scaling behavior in the high-field limit observed in H3LiIr2O6. 
    more » « less
  2. We study the phase diagram of the Yao-Lee model with Kitaev-type spin-orbital interactions in the presence of Dzyaloshinskii-Moriya interactions and external magnetic fields. Unlike the Kitaev model, the Yao-Lee model can still be solved exactly under these perturbations due to the enlarged local Hilbert space. Through a variational analysis, we obtain a rich ground-state phase diagram that consists of a variety of vison crystals with periodic arrangements of background Z2 flux (i.e., visons). With an out-of-plane magnetic field, these phases have gapped bulk and chiral edge states, characterized by a Chern number ν and an associated chiral central charge c=ν/2 of edge states. We also find helical Majorana edge states that are protected by magnetic mirror symmetry. For the bilayer systems, we find that interlayer coupling can also stabilize new topological phases. Our results spotlight the tunability and the accompanying rich physics in exactly solvable spin-orbital generalizations of the Kitaev model. 
    more » « less
  3. One of the most important issues in modern condensed matter physics is the realization of fractionalized excitations, such as the Majorana excitations in the Kitaev quantum spin liquid. To this aim, the 3d-based Kitaev material Na2Co2TeO6 is a promising candidate whose magnetic phase diagram of B // a* contains a field-induced intermediate magnetically disordered phase within 7.5 T < |B| < 10 T. The experimental observations, including the restoration of the crystalline point group symmetry in the angle-dependent torque and the coexisting magnon excitations and spinon-continuum in the inelastic neutron scattering spectrum, provide strong evidence that this disordered phase is a field induced quantum spin liquid with partially polarized spins. Our variational Monte Carlo simulation with the effective K-J1-Γ-Γ'-J3 model reproduces the experimental data and further supports this conclusion. 
    more » « less
  4. Abstract Spin-orbit coupled honeycomb magnets with the Kitaev interaction have received a lot of attention due to their potential of hosting exotic quantum states including quantum spin liquids. Thus far, the most studied Kitaev systems are 4 d /5 d -based honeycomb magnets. Recent theoretical studies predicted that 3 d -based honeycomb magnets, including Na 2 Co 2 TeO 6 (NCTO), could also be a potential Kitaev system. Here, we have used a combination of heat capacity, magnetization, electron spin resonance measurements alongside inelastic neutron scattering (INS) to study NCTO’s quantum magnetism, and we have found a field-induced spin disordered state in an applied magnetic field range of 7.5 T <  B (⊥ b -axis) < 10.5 T. The INS spectra were also simulated to tentatively extract the exchange interactions. As a 3 d -magnet with a field-induced disordered state on an effective spin-1/2 honeycomb lattice, NCTO expands the Kitaev model to 3 d compounds, promoting further interests on the spin-orbital effect in quantum magnets. 
    more » « less
  5. Abstract The search for quantum spin liquids—topological magnets with fractionalized excitations—has been a central theme in condensed matter and materials physics. Despite numerous theoretical proposals, connecting experiment with detailed theory exhibiting a robust quantum spin liquid has remained a central challenge. Here, focusing on the strongly spin-orbit coupled effectiveS = 1/2 pyrochlore magnet Ce2Zr2O7, we analyze recent thermodynamic and neutron-scattering experiments, to identify a microscopic effective Hamiltonian through a combination of finite temperature Lanczos, Monte Carlo, and analytical spin dynamics calculations. Its parameter values suggest the existence of an exotic phase, aπ-flux U(1) quantum spin liquid. Intriguingly, the octupolar nature of the moments makes them less prone to be affected by magnetic disorder, while also hiding some otherwise characteristic signatures from neutrons, making this spin liquid arguably more stable than its more conventional counterparts. 
    more » « less