Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)The Kitaev honeycomb model has attracted significant attention due to its exactly solvable spin-liquid ground state with fractionalized Majorana excitations and its possible materialization in magnetic Mott insulators with strong spin-orbit couplings. Recently, the 5d-electron compound H3LiIr2O6 has shown to be a strong candidate for Kitaev physics considering the absence of any signs of a long-range ordered magnetic state. In this work, we demonstrate that a finite density of random vacancies in the Kitaev model gives rise to a striking pileup of low-energy Majorana eigenmodes and reproduces the apparent power-law upturn in the specific heat measurements of H3LiIr2O6. Physically, the vacancies can originate from various sources such as missing magnetic moments or the presence of nonmagnetic impurities (true vacancies), or from local weak couplings of magnetic moments due to strong but rare bond randomness (quasivacancies). We show numerically that the vacancy effect is readily detectable even at low vacancy concentrations and that it is not very sensitive either to the nature of vacancies or to different flux backgrounds. We also study the response of the site-diluted Kitaev spin liquid to the three-spin interaction term, which breaks time-reversal symmetry and imitates an external magnetic field. We propose a field-induced flux-sector transition where the ground state becomes flux-free for larger fields, resulting in a clear suppression of the low-temperature specific heat. Finally, we discuss the effect of dangling Majorana fermions in the case of true vacancies and show that their coupling to an applied magnetic field via the Zeeman interaction can also account for the scaling behavior in the high-field limit observed in H3LiIr2O6.more » « less
-
null (Ed.)Here we revisit the thermodynamics of the Kitaev quantum spin liquid realized on the honeycomb lattice. We address two main questions: First, we investigate whether there are observable thermodynamic signatures of the topological Majorana boundary modes of the Kitaev honeycomb model. We argue that for the time-reversal invariant case the residual low-temperature entropy is the primary thermodynamic signature of these Majorana edge modes. Using large-scale Monte Carlo simulations, we verify that this residual entropy is present in the full Kitaev model. When time-reversal symmetry is broken, the Majorana edge modes are potentially observable in more direct thermodynamic measurements such as the specific heat, though only at temperatures well below the bulk gap. Second, we study the energetics, and the corresponding thermodynamic signatures, of the flux excitations in the Kitaev model. Specifically, we study the flux interactions on both cylinder and torus geometries numerically and quantify their impact on the thermodynamics of the Kitaev spin liquid by using a polynomial fit for the average flux energy as a function of flux density and extrapolating it to the thermodynamic limit. By comparing this model to Monte Carlo simulations, we find that flux interactions have a significant quantitative impact on the shape and the position of the low-temperature peak in the specific heat.more » « less
An official website of the United States government
