Nature-based Climate Solutions (NbCS) are managed alterations to ecosystems designed to increase carbon sequestration or reduce greenhouse gas emissions. While they have growing public and private support, the realizable benefits and unintended consequences of NbCS are not well understood. At regional scales where policy decisions are often made, NbCS benefits are estimated from soil and tree survey data that can miss important carbon sources and sinks within an ecosystem, and do not reveal the biophysical impacts of NbCS for local water and energy cycles. The only direct observations of ecosystem-scale carbon fluxes, e.g., by eddy covariance flux towers, have not yet been systematically assessed for what they can tell us about NbCS potentials, and state-of-the-art remote sensing products and land-surface models are not yet being widely used to inform NbCS policy making or implementation. As a result, there is a critical mismatch between the point- and tree- scale data most often used to assess NbCS benefits and impacts, the ecosystem and landscape scales where NbCS projects are implemented, and the regional to continental scales most relevant to policy making. Here, we propose a research agenda to confront these gaps using data and tools that have long been used to understand the mechanisms driving ecosystem carbon and energy cycling, but have not yet been widely applied to NbCS. We outline steps for creating robust NbCS assessments at both local to regional scales that are informed by ecosystem-scale observations, and which consider concurrent biophysical impacts, future climate feedbacks, and the need for equitable and inclusive NbCS implementation strategies. We contend that these research goals can largely be accomplished by shifting the scales at which pre-existing tools are applied and blended together, although we also highlight some opportunities for more radical shifts in approach.
more »
« less
An Ecosystem-Scale Flux Measurement Strategy to Assess Natural Climate Solutions
Eddy covariance measurement systems provide direct observation of the exchange of greenhouse gases between ecosystems and the atmosphere, but have only occasionally been intentionally applied to quantify the carbon dynamics associated with specific climate mitigation strategies. Natural climate solutions (NCS) harness the photosynthetic power of ecosystems to avoid emissions and remove atmospheric carbon dioxide (CO2), sequestering it in biological carbon pools. In this perspective, we aim to determine which kinds of NCS strategies are most suitable for ecosystem-scale flux measurements and how these measurements should be deployed for diverse NCS scales and goals. We find that ecosystem-scale flux measurements bring unique value when assessing NCS strategies characterized by inaccessible and hard-to-observe carbon pool changes, important non-CO2 greenhouse gas fluxes, the potential for biophysical impacts, or dynamic successional changes. We propose three deployment types for ecosystem-scale flux measurements at various NCS scales to constrain wide uncertainties and chart a workable path forward: “pilot”, “upscale”, and “monitor”. Together, the integration of ecosystem-scale flux measurements by the NCS community and the prioritization of NCS measurements by the flux community, have the potential to improve accounting in ways that capture the net impacts, unintended feedbacks, and on-the-ground specifics of a wide range of emerging NCS strategies.
more »
« less
- Award ID(s):
- 1752083
- NSF-PAR ID:
- 10217350
- Date Published:
- Journal Name:
- Environmental Science & Technology
- ISSN:
- 0013-936X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Research infrastructures play a key role in launching a new generation of integrated long-term, geographically distributed observation programmes designed to monitor climate change, better understand its impacts on global ecosystems, and evaluate possible mitigation and adaptation strategies. The pan-European Integrated Carbon Observation System combines carbon and greenhouse gas (GHG; CO 2 , CH 4 , N 2 O, H 2 O) observations within the atmosphere, terrestrial ecosystems and oceans. High-precision measurements are obtained using standardised methodologies, are centrally processed and openly available in a traceable and verifiable fashion in combination with detailed metadata. The Integrated Carbon Observation System ecosystem station network aims to sample climate and land-cover variability across Europe. In addition to GHG flux measurements, a large set of complementary data (including management practices, vegetation and soil characteristics) is collected to support the interpretation, spatial upscaling and modelling of observed ecosystem carbon and GHG dynamics. The applied sampling design was developed and formulated in protocols by the scientific community, representing a trade-off between an ideal dataset and practical feasibility. The use of open-access, high-quality and multi-level data products by different user communities is crucial for the Integrated Carbon Observation System in order to achieve its scientific potential and societal value.more » « less
-
Peatlands, which account for approximately 15% of land surface across the arctic and boreal regions of the globe, are experiencing a range of ecological impacts as a result of climate change. Factors that include altered hydrology resulting from drought and permafrost thaw, rising temperatures, and elevated levels of atmospheric carbon dioxide have been shown to cause plant community compositional changes. Shifts in plant composition affect the productivity, species diversity, and carbon cycling of peatlands. We used hyperspectral remote sensing to characterize the response of boreal peatland plant composition and species diversity to warming, hydrologic change, and elevated CO2. Hyperspectral remote sensing techniques offer the ability to complete landscape-scale analyses of ecological responses to climate disturbance when paired with plot-level measurements that link ecosystem biophysical properties with spectral reflectance signatures. Working within two large ecosystem manipulation experiments, we examined climate controls on composition and diversity in two types of common boreal peatlands: a nutrient rich fen located at the Alaska Peatland Experiment (APEX) in central Alaska, and an ombrotrophic bog located in northern Minnesota at the Spruce and Peatland Responses Under Changing Environments (SPRUCE) experiment. We found a strong effect of plant functional cover on spectral reflectance characteristics. We also found a positive relationship between species diversity and spectral variation at the APEX field site, which is consistent with other recently published findings. Based on the results of our field study, we performed a supervised land cover classification analysis on an aerial hyperspectral dataset to map peatland plant functional types (PFTs) across an area encompassing a range of different plant communities. Our results underscore recent advances in the application of remote sensing measurements to ecological research, particularly in far northern ecosystems.more » « less
-
Climate change is affecting the Arctic at an unprecedented rate, potentially releasing substantial amounts of greenhouse gases (CO2 (carbon dioxide) and CH4 (Methane)) from tundra ecosystems. Measuring greenhouse gas emissions in the Arctic, particularly outside of the summer period, is very challenging due to extreme weather conditions. This research project provided the first annual balance of both CH4 and CO2 fluxes in a total of five sites spanning a 300Km transect across the North Slope of Alaska (three sites in Barrow, one site in Aquasuk, and one site in Ivotuk). The results from the continuous year-round CH4 fluxes across these sites showed how cumulative emissions for the cold season accounted on average for 50% of the annual budget (Zona et al., 2016), a notably higher contribution than previously modelled, and also higher than observed in boreal Alaska. The analysis of the cold period CH4 fluxes suggested that the presence of an unfrozen soil layer in the fall and early winter was a major control on cold season CH4 emissions (Zona et al., 2016). We also cross-compared all instruments measuring ecosystem scale CO2 and CH4 fluxes operating at our sites, which allowed us to make recommendation of the best performing instruments under these extreme weather conditions. The best performing instruments were closed path analyzers and intermittently heated sonic anemometers which had the highest final data cover. A continuously heated anemometer increased data coverage relative to non-heated anemometers, but resulted in an overestimation of the fluxes (Goodrich et al., 2016). We developed an intermittent heating strategy that was only activated when the data quality was low, and appeared to be the preferable method to prevent icing while avoiding biases to the measurements. Closed and open-path analyzers showed good agreement, but data coverage was much greater when using closed-path analyzers, especially during winter (Goodrich et al., 2016). Given the importance of vegetation on greenhouse gas emissions, we also investigated the role of different vegetation types under a broad range of environmental conditions on the CH4 emissions. We found that vegetation type can be a very useful tool to describe the spatial variability in CH4 emissions over the landscape (McEwing et al., 2015), and that just two vegetation types were able to explain about 50% of the variability in CH4 fluxes across ecosystems even hundreds of kilometers apart (Davidson et al., 2016a). To upscale these plot scale fluxes we completed high resolution vegetation maps in each of our tower sites (Davidson et al., 2016b), which are the finest resolution maps currently available from these sites, and also contributed to larger scale mapping effort (Walker et al., 2016). The soil microbial analysis from soil cores collected across our sites showed an association between overall microbial diversity and latitude, with a higher diversity found in the northerly site and lower diversity in the southerly site, contrary to current knowledge (Wagner et al., accepted). We also measured CH4 and CO2 concentrations in the soil, which showed to be orders of magnitude higher than in the atmosphere (Arndt et al., 2016). Our results contributed to model development (Xu et al., 2016; Kobayashi et al., 2016; Liljedahl et al., 2016; Luus et al., 2017), and to a wide variety of other projects as shown by the hundreds of download of our data from Ameriflux. Overall, this grant resulted in the publication of 25 peer reviewed journal articles, including in high impact factor journals such as PNAS (Proceedings of the National Academy of Sciences of the United States of America), and Nature Climate Change, in addition to five more in review and in preparation, and supported the research of seven PhD students, two master students, and ten undergraduate students.more » « less
-
Abstract A substantial body of research now exists demonstrating sensitivities of marine organisms to ocean acidification (OA) in laboratory settings. However, corresponding in situ observations of marine species or ecosystem changes that can be unequivocally attributed to anthropogenic OA are limited. Challenges remain in detecting and attributing OA effects in nature, in part because multiple environmental changes are co-occurring with OA, all of which have the potential to influence marine ecosystem responses. Furthermore, the change in ocean pH since the industrial revolution is small relative to the natural variability within many systems, making it difficult to detect, and in some cases, has yet to cross physiological thresholds. The small number of studies that clearly document OA impacts in nature cannot be interpreted as a lack of larger-scale attributable impacts at the present time or in the future but highlights the need for innovative research approaches and analyses. We summarize the general findings in four relatively well-studied marine groups (seagrasses, pteropods, oysters, and coral reefs) and integrate overarching themes to highlight the challenges involved in detecting and attributing the effects of OA in natural environments. We then discuss four potential strategies to better evaluate and attribute OA impacts on species and ecosystems. First, we highlight the need for work quantifying the anthropogenic input of CO2 in coastal and open-ocean waters to understand how this increase in CO2 interacts with other physical and chemical factors to drive organismal conditions. Second, understanding OA-induced changes in population-level demography, potentially increased sensitivities in certain life stages, and how these effects scale to ecosystem-level processes (e.g. community metabolism) will improve our ability to attribute impacts to OA among co-varying parameters. Third, there is a great need to understand the potential modulation of OA impacts through the interplay of ecology and evolution (eco–evo dynamics). Lastly, further research efforts designed to detect, quantify, and project the effects of OA on marine organisms and ecosystems utilizing a comparative approach with long-term data sets will also provide critical information for informing the management of marine ecosystems.more » « less