Understanding the driving mechanisms behind existing patterns of vegetation hydraulic traits and community trait diversity is critical for advancing predictions of the terrestrial carbon cycle because hydraulic traits affect both ecosystem and Earth system responses to changing water availability. Here, we leverage an extensive trait database and a long-term continental forest plot network to map changes in community trait distributions and quantify “trait velocities” (the rate of change in community-weighted traits) for different regions and different forest types across the United States from 2000 to the present. We show that diversity in hydraulic traits and photosynthetic characteristics is more related to local water availability than overall species diversity. Finally, we find evidence for coordinated shifts toward communities with more drought-tolerant traits driven by tree mortality, but the magnitude of responses differs depending on forest type. The hydraulic trait distribution maps provide a publicly available platform to fundamentally advance understanding of community trait change in response to climate change and predictive abilities of mechanistic vegetation models.
Classic debates in community ecology focused on the complexities of considering an ecosystem as a super-organ or organism. New consideration of such perspectives could clarify mechanisms underlying the dynamics of forest carbon dioxide (CO2) uptake and water vapor loss, important for predicting and managing the future of Earth’s ecosystems and climate system. Here, we provide a rubric for considering ecosystem traits as aggregated, systemic, or emergent, i.e., representing the ecosystem as an aggregate of its individuals or as a metaphorical or literal super-organ or organism. We review recent approaches to scaling-up plant water relations (hydraulics) concepts developed for organs and organisms to enable and interpret measurements at ecosystem-level. We focus on three community-scale versions of water relations traits that have potential to provide mechanistic insight into climate change responses of forest CO2 and H2O gas exchange and productivity: leaf water potential (Ψcanopy), pressure volume curves (eco-PV), and hydraulic conductance (Keco). These analyses can reveal additional ecosystem-scale parameters analogous to those typically quantified for leaves or plants (e.g., wilting point and hydraulic vulnerability) that may act as thresholds in forest responses to drought, including growth cessation, mortality, and flammability. We unite these concepts in a novel framework to predict Ψcanopy and its approaching of critical thresholds during drought, using measurements of Keco and eco-PV curves. We thus delineate how the extension of water relations concepts from organ- and organism-scales can reveal the hydraulic constraints on the interaction of vegetation and climate and provide new mechanistic understanding and prediction of forest water use and productivity.
more » « less- NSF-PAR ID:
- 10542270
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Integrative And Comparative Biology
- Volume:
- 64
- Issue:
- 2
- ISSN:
- 1540-7063
- Format(s):
- Medium: X Size: p. 424-440
- Size(s):
- p. 424-440
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Soil and atmospheric droughts increasingly threaten plant survival and productivity around the world. Yet, conceptual gaps constrain our ability to predict ecosystem‐scale drought impacts under climate change. Here, we introduce the ecosystem wilting point (Ψ EWP ), a property that integrates the drought response of an ecosystem's plant community across the soil–plant–atmosphere continuum. Specifically, Ψ EWP defines a threshold below which the capacity of the root system to extract soil water and the ability of the leaves to maintain stomatal function are strongly diminished. We combined ecosystem flux and leaf water potential measurements to derive the Ψ EWP of a Quercus‐Carya forest from an “ecosystem pressure–volume (PV) curve,” which is analogous to the tissue‐level technique. When community predawn leaf water potential (Ψ pd ) was above Ψ EWP (=−2.0 MPa), the forest was highly responsive to environmental dynamics. When Ψ pd fell below Ψ EWP , the forest became insensitive to environmental variation and was a net source of carbon dioxide for nearly 2 months. Thus, Ψ EWP is a threshold defining marked shifts in ecosystem functional state. Though there was rainfall‐induced recovery of ecosystem gas exchange following soaking rains, a legacy of structural and physiological damage inhibited canopy photosynthetic capacity. Although over 16 growing seasons, only 10% of Ψ pd observations fell below Ψ EWP , the forest is commonly only 2–4 weeks of intense drought away from reaching Ψ EWP , and thus highly reliant on frequent rainfall to replenish the soil water supply. We propose, based on a bottom‐up analysis of root density profiles and soil moisture characteristic curves, that soil water acquisition capacity is the major determinant of Ψ EWP , and species in an ecosystem require compatible leaf‐level traits such as turgor loss point so that leaf wilting is coordinated with the inability to extract further water from the soil.more » « less
-
Abstract Drought-induced productivity reductions and tree mortality have been increasing in recent decades in forests around the globe. Developing adaptation strategies hinges on an adequate understanding of the mechanisms governing the drought vulnerability of forest stands. Prescribed reduction in stand density has been used as a management tool to reduce water stress and wildfire risk, but the processes that modulate fine-scale variations in plant water supply and water demand are largely missing in ecosystem models. We used an ecohydrological model that couples plant hydraulics with groundwater hydrology to examine how within-stand variations in tree spatial arrangements and topography might mitigate forest vulnerability to drought at individual-tree and stand scales. Our results demonstrated thinning generally ameliorated plant hydraulic stress and improved carbon and water fluxes of the remaining trees, although the effectiveness varied by climate and topography. Variable thinning that adjusted thinning intensity based on topography-mediated water availability achieved higher stand productivity and lower mortality risk, compared to evenly-spaced thinning at comparable intensities. The results from numerical experiments provided mechanistic evidence that topography mediates the effectiveness of thinning and highlighted the need for an explicit consideration of within-stand heterogeneity in trees and abiotic environments when designing forest thinning to mitigate drought impacts.
-
Abstract More frequent and severe droughts are driving increased forest mortality around the globe. We urgently need to describe and predict how drought affects forest carbon cycling and identify thresholds of environmental stress that trigger ecosystem collapse. Quantifying the effects of drought at an ecosystem level is complex because dynamic climate–plant relationships can cause rapid and/or prolonged shifts in carbon balance. We employ the CARbon DAta MOdel fraMework (CARDAMOM) to investigate legacy effects of drought on forest carbon pools and fluxes. Our Bayesian model‐data fusion approach uses tower observed meteorological forcing and carbon fluxes to determine the response and sensitivity of aboveground and belowground ecological processes associated with the 2012–2015 California drought. Our study area is a mid‐montane mixed conifer forest in the Southern Sierras. CARDAMOM constrained with gross primary productivity (GPP) estimates covering 2011–2017 show a ~75% reduction in GPP, compared to negligible GPP change when constrained with 2011 only. Precipitation across 2012–2015 was 45% (474 mm) lower than the historical average and drove a cascading depletion in soil moisture and carbon pools (foliar, labile, roots, and litter). Adding 157 mm during an especially stressful year (2014, annual rainfall = 293 mm) led to a smaller depletion of water and carbon pools, steering the ecosystem away from a state of GPP tipping‐point collapse to recovery. We present novel process‐driven insights that demonstrate the sensitivity of GPP collapse to ecosystem foliar carbon and soil moisture states—showing that the full extent of GPP response takes several years to arise. Thus, long‐term changes in soil moisture and carbon pools can provide a mechanistic link between drought and forest mortality. Our study provides an example for how key precipitation threshold ranges can influence forest productivity, making them useful for monitoring and predicting forest mortality events.
-
Abstract. Extreme drought events in Amazon forests are expected to become more frequent and more intense with climate change, threatening ecosystem function and carbon balance. Yet large uncertainties exist on the resilience of this ecosystem to drought. A better quantification of tree hydraulics and mortality processes is needed to anticipate future drought effects on Amazon forests. Most state-of-the-art dynamic global vegetation models are relatively poor in their mechanistic description of these complex processes. Here, we implement a mechanistic plant hydraulic module within the ORCHIDEE-CAN-NHA r7236 land surface model to simulate the percentage loss of conductance (PLC) and changes in water storage among organs via a representation of the water potentials and vertical water flows along the continuum from soil to roots, stems and leaves. The model was evaluated against observed seasonal variability in stand-scale sap flow, soil moisture and productivity under both control and drought setups at the Caxiuanã throughfall exclusion field experiment in eastern Amazonia between 2001 and 2008. A relationship between PLC and tree mortality is built in the model from two empirical parameters, the cumulated duration of drought exposure that triggers mortality, and the mortality fraction in each day exceeding the exposure. Our model captures the large biomass drop in the year 2005 observed 4 years after throughfall reduction, and produces comparable annual tree mortality rates with observation over the study period. Our hydraulic architecture module provides promising avenues for future research in assimilating experimental data to parameterize mortality due to drought-induced xylem dysfunction. We also highlight that species-based (isohydric or anisohydric) hydraulic traits should be further tested to generalize the model performance in predicting the drought risks.more » « less