skip to main content


Title: Continualization of Probabilistic Programs With Correction.
Probabilistic Programming offers a concise way to represent stochastic models and perform automated statistical inference. However,many real-world models have discrete or hybrid discrete-continuous distributions, for which existing tools may suffer non-trivial limitations.Inference and parameter estimation can be exceedingly slow for these models because many inference algorithms compute results faster (or exclusively) when the distributions being inferred are continuous. To address this discrepancy, this paper presents Leios. Leios is the first approach for systematically approximating arbitrary probabilistic programs that have discrete, or hybrid discrete-continuous random variables. The approximate programs have all their variables fully continualized. We show that once we have the fully continuous approximate program, we can perform inference and parameter estimation faster by exploiting the existing support that many languages offer for continuous distributions.Furthermore, we show that the estimates obtained when performing inference and parameter estimation on the continuous approximation are still comparably close to both the true parameter values and the estimates obtained when performing inference on the original model.  more » « less
Award ID(s):
1846354
NSF-PAR ID:
10217363
Author(s) / Creator(s):
Date Published:
Journal Name:
29th European Symposium on Programming (ESOP), 2020.
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A streaming probabilistic program receives a stream of observations and produces a stream of distributions that are conditioned on these observations. Efficient inference is often possible in a streaming context using Rao-Blackwellized particle filters (RBPFs), which exactly solve inference problems when possible and fall back on sampling approximations when necessary. While RBPFs can be implemented by hand to provide efficient inference, the goal of streaming probabilistic programming is to automatically generate such efficient inference implementations given input probabilistic programs. In this work, we propose semi-symbolic inference, a technique for executing probabilistic programs using a runtime inference system that automatically implements Rao-Blackwellized particle filtering. To perform exact and approximate inference together, the semi-symbolic inference system manipulates symbolic distributions to perform exact inference when possible and falls back on approximate sampling when necessary. This approach enables the system to implement the same RBPF a developer would write by hand. To ensure this, we identify closed families of distributions – such as linear-Gaussian and finite discrete models – on which the inference system guarantees exact inference. We have implemented the runtime inference system in the ProbZelus streaming probabilistic programming language. Despite an average 1.6× slowdown compared to the state of the art on existing benchmarks, our evaluation shows that speedups of 3×-87× are obtainable on a new set of challenging benchmarks we have designed to exploit closed families. 
    more » « less
  2. Gradient-based approximate inference methods, such as Stein variational gradient descent (SVGD), provide simple and general-purpose inference engines for differentiable continuous distributions. However, existing forms of SVGD cannot be directly applied to discrete distributions. In this work, we fill this gap by proposing a simple yet general framework that transforms discrete distributions to equivalent piecewise continuous distributions, on which the gradient-free SVGD is applied to perform efficient approximate inference. The empirical results show that our method outperforms traditional algorithms such as Gibbs sampling and discontinuous Hamiltonian Monte Carlo on various challenging benchmarks of discrete graphical models. We demonstrate that our method provides a promising tool for learning ensembles of binarized neural network (BNN), outperforming other widely used ensemble methods on learning binarized AlexNet on CIFAR-10 dataset. In addition, such transform can be straightforwardly employed in gradient-free kernelized Stein discrepancy to perform goodness-of-fit (GOF) test on discrete distributions. Our proposed method outperforms existing GOF test methods for intractable discrete distributions. 
    more » « less
  3. Lifted inference algorithms exploit model symmetry to reduce computational cost in probabilistic inference. However, most existing lifted inference algorithms operate only over discrete domains or continuous domains with restricted potential functions. We investigate two approximate lifted variational approaches that apply to domains with general hybrid potentials, and are expressive enough to capture multi-modality. We demonstrate that the proposed variational methods are highly scalable and can exploit approximate model symmetries even in the presence of a large amount of continuous evidence, outperforming existing message-passing-based approaches in a variety of settings. Additionally, we present a sufficient condition for the Bethe variational approximation to yield a non-trivial estimate over the marginal polytope.

     
    more » « less
  4. Meila, Marina ; Zhang, Tong (Ed.)
    Black-box variational inference algorithms use stochastic sampling to analyze diverse statistical models, like those expressed in probabilistic programming languages, without model-specific derivations. While the popular score-function estimator computes unbiased gradient estimates, its variance is often unacceptably large, especially in models with discrete latent variables. We propose a stochastic natural gradient estimator that is as broadly applicable and unbiased, but improves efficiency by exploiting the curvature of the variational bound, and provably reduces variance by marginalizing discrete latent variables. Our marginalized stochastic natural gradients have intriguing connections to classic coordinate ascent variational inference, but allow parallel updates of variational parameters, and provide superior convergence guarantees relative to naive Monte Carlo approximations. We integrate our method with the probabilistic programming language Pyro and evaluate real-world models of documents, images, networks, and crowd-sourcing. Compared to score-function estimators, we require far fewer Monte Carlo samples and consistently convergence orders of magnitude faster. 
    more » « less
  5. Probabilistic circuits (PCs) such as sum-product networks efficiently represent large multi-variate probability distributions. They are preferred in practice over other probabilistic representations, such as Bayesian and Markov networks, because PCs can solve marginal inference (MAR) tasks in time that scales linearly in the size of the network. Unfortunately, the most probable explanation (MPE) task and its generalization, the marginal maximum-a-posteriori (MMAP) inference task remain NP-hard in these models. Inspired by the recent work on using neural networks for generating near-optimal solutions to optimization problems such as integer linear programming, we propose an approach that uses neural networks to approximate MMAP inference in PCs. The key idea in our approach is to approximate the cost of an assignment to the query variables using a continuous multilinear function and then use the latter as a loss function. The two main benefits of our new method are that it is self-supervised, and after the neural network is learned, it requires only linear time to output a solution. We evaluate our new approach on several benchmark datasets and show that it outperforms three competing linear time approximations: max-product inference, max-marginal inference, and sequential estimation, which are used in practice to solve MMAP tasks in PCs.

     
    more » « less