Probabilistic programming languages (PPLs) are an expressive means for creating and reasoning about probabilistic models. Unfortunatelyhybridprobabilistic programs that involve both continuous and discrete structures are not well supported by today’s PPLs. In this paper we develop a new approximate inference algorithm for hybrid probabilistic programs that first discretizes the continuous distributions and then performs discrete inference on the resulting program. The key novelty is a form of discretization that we callbit blasting, which uses a binary representation of numbers such that a domain of discretized points can be succinctly represented as a discrete probabilistic program overpoly Boolean random variables. Surprisingly, we prove that many common continuous distributions can be bit blasted in a manner that incurs no loss of accuracy over an explicit discretization and supports efficient probabilistic inference. We have built a probabilistic programming system for hybrid programs calledHyBit, which employs bit blasting followed by discrete probabilistic inference. We empirically demonstrate the benefits of our approach over existing sampling-based and symbolic inference approaches
more »
« less
Continualization of Probabilistic Programs With Correction.
Probabilistic Programming offers a concise way to represent stochastic models and perform automated statistical inference. However,many real-world models have discrete or hybrid discrete-continuous distributions, for which existing tools may suffer non-trivial limitations.Inference and parameter estimation can be exceedingly slow for these models because many inference algorithms compute results faster (or exclusively) when the distributions being inferred are continuous. To address this discrepancy, this paper presents Leios. Leios is the first approach for systematically approximating arbitrary probabilistic programs that have discrete, or hybrid discrete-continuous random variables. The approximate programs have all their variables fully continualized. We show that once we have the fully continuous approximate program, we can perform inference and parameter estimation faster by exploiting the existing support that many languages offer for continuous distributions.Furthermore, we show that the estimates obtained when performing inference and parameter estimation on the continuous approximation are still comparably close to both the true parameter values and the estimates obtained when performing inference on the original model.
more »
« less
- Award ID(s):
- 1846354
- PAR ID:
- 10217363
- Date Published:
- Journal Name:
- 29th European Symposium on Programming (ESOP), 2020.
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A streaming probabilistic program receives a stream of observations and produces a stream of distributions that are conditioned on these observations. Efficient inference is often possible in a streaming context using Rao-Blackwellized particle filters (RBPFs), which exactly solve inference problems when possible and fall back on sampling approximations when necessary. While RBPFs can be implemented by hand to provide efficient inference, the goal of streaming probabilistic programming is to automatically generate such efficient inference implementations given input probabilistic programs. In this work, we propose semi-symbolic inference, a technique for executing probabilistic programs using a runtime inference system that automatically implements Rao-Blackwellized particle filtering. To perform exact and approximate inference together, the semi-symbolic inference system manipulates symbolic distributions to perform exact inference when possible and falls back on approximate sampling when necessary. This approach enables the system to implement the same RBPF a developer would write by hand. To ensure this, we identify closed families of distributions – such as linear-Gaussian and finite discrete models – on which the inference system guarantees exact inference. We have implemented the runtime inference system in the ProbZelus streaming probabilistic programming language. Despite an average 1.6× slowdown compared to the state of the art on existing benchmarks, our evaluation shows that speedups of 3×-87× are obtainable on a new set of challenging benchmarks we have designed to exploit closed families.more » « less
-
Gradient-based approximate inference methods, such as Stein variational gradient descent (SVGD), provide simple and general-purpose inference engines for differentiable continuous distributions. However, existing forms of SVGD cannot be directly applied to discrete distributions. In this work, we fill this gap by proposing a simple yet general framework that transforms discrete distributions to equivalent piecewise continuous distributions, on which the gradient-free SVGD is applied to perform efficient approximate inference. The empirical results show that our method outperforms traditional algorithms such as Gibbs sampling and discontinuous Hamiltonian Monte Carlo on various challenging benchmarks of discrete graphical models. We demonstrate that our method provides a promising tool for learning ensembles of binarized neural network (BNN), outperforming other widely used ensemble methods on learning binarized AlexNet on CIFAR-10 dataset. In addition, such transform can be straightforwardly employed in gradient-free kernelized Stein discrepancy to perform goodness-of-fit (GOF) test on discrete distributions. Our proposed method outperforms existing GOF test methods for intractable discrete distributions.more » « less
-
Lifted inference algorithms exploit model symmetry to reduce computational cost in probabilistic inference. However, most existing lifted inference algorithms operate only over discrete domains or continuous domains with restricted potential functions. We investigate two approximate lifted variational approaches that apply to domains with general hybrid potentials, and are expressive enough to capture multi-modality. We demonstrate that the proposed variational methods are highly scalable and can exploit approximate model symmetries even in the presence of a large amount of continuous evidence, outperforming existing message-passing-based approaches in a variety of settings. Additionally, we present a sufficient condition for the Bethe variational approximation to yield a non-trivial estimate over the marginal polytope.more » « less
-
Meila, Marina; Zhang, Tong (Ed.)Black-box variational inference algorithms use stochastic sampling to analyze diverse statistical models, like those expressed in probabilistic programming languages, without model-specific derivations. While the popular score-function estimator computes unbiased gradient estimates, its variance is often unacceptably large, especially in models with discrete latent variables. We propose a stochastic natural gradient estimator that is as broadly applicable and unbiased, but improves efficiency by exploiting the curvature of the variational bound, and provably reduces variance by marginalizing discrete latent variables. Our marginalized stochastic natural gradients have intriguing connections to classic coordinate ascent variational inference, but allow parallel updates of variational parameters, and provide superior convergence guarantees relative to naive Monte Carlo approximations. We integrate our method with the probabilistic programming language Pyro and evaluate real-world models of documents, images, networks, and crowd-sourcing. Compared to score-function estimators, we require far fewer Monte Carlo samples and consistently convergence orders of magnitude faster.more » « less
An official website of the United States government

