skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1846354

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2025
  2. Free, publicly-accessible full text available May 25, 2025
  3. Free, publicly-accessible full text available May 10, 2025
  4. Free, publicly-accessible full text available April 27, 2025
  5. We present Pasado, a technique for synthesizing precise static analyzers for Automatic Differentiation. Our technique allows one to automatically construct a static analyzer specialized for the Chain Rule, Product Rule, and Quotient Rule computations for Automatic Differentiation in a way that abstracts all of the nonlinear operations of each respective rule simultaneously. By directly synthesizing an abstract transformer for the composite expressions of these 3 most common rules of AD, we are able to obtain significant precision improvement compared to prior works which compose standard abstract transformers together suboptimally. We prove our synthesized static analyzers sound and additionally demonstrate the generality of our approach by instantiating these AD static analyzers with different nonlinear functions, different abstract domains (both intervals and zonotopes) and both forward-mode and reverse-mode AD. We evaluate Pasado on multiple case studies, namely soundly computing bounds on a neural network’s local Lipschitz constant, soundly bounding the sensitivities of financial models, certifying monotonicity, and lastly, bounding sensitivities of the solutions of differential equations from climate science and chemistry for verified ranges of initial conditions and parameters. The local Lipschitz constants computed by Pasado on our largest CNN are up to 2750× more precise compared to the existing state-of-the-art zonotope analysis. The bounds obtained on the sensitivities of the climate, chemical, and financial differential equation solutions are between 1.31 − 2.81× more precise (on average) compared to a state-of-the-art zonotope analysis. 
    more » « less
  6. Complete verification of deep neural networks (DNNs) can exactly determine whether the DNN satisfies a desired trustworthy property (e.g., robustness, fairness) on an infinite set of inputs or not. Despite the tremendous progress to improve the scalability of complete verifiers over the years on individual DNNs, they are inherently inefficient when a deployed DNN is updated to improve its inference speed or accuracy. The inefficiency is because the expensive verifier needs to be run from scratch on the updated DNN. To improve efficiency, we propose a new, general framework for incremental and complete DNN verification based on the design of novel theory, data structure, and algorithms. Our contributions implemented in a tool named IVAN yield an overall geometric mean speedup of 2.4x for verifying challenging MNIST and CIFAR10 classifiers and a geometric mean speedup of 3.8x for the ACAS-XU classifiers over the state-of-the-art baselines. 
    more » « less