skip to main content

Title: Towards Understanding the Dynamics of the First-Order Adversaries
An acknowledged weakness of neural networks is their vulnerability to adversarial perturbations to the inputs. To improve the robustness of these models, one of the most popular defense mechanisms is to alternatively maximize the loss over the constrained perturbations (or called adversaries) on the inputs using projected gradient ascent and minimize over weights. In this paper, we analyze the dynamics of the maximization step towards understanding the experimentally observed effectiveness of this defense mechanism. Specifically, we investigate the non-concave landscape of the adversaries for a two-layer neural network with a quadratic loss. Our main result proves that projected gradient ascent finds a local maximum of this non-concave problem in a polynomial number of iterations with high probability. To our knowledge, this is the first work that provides a convergence analysis of the first-order adversaries. Moreover, our analysis demonstrates that, in the initial phase of adversarial training, the scale of the inputs matters in the sense that a smaller input scale leads to faster convergence of adversarial training and a “more regular” landscape. Finally, we show that these theoretical findings are in excellent agreement with a series of experiments.
; ; ;
Daumé, H; Singh, A
Award ID(s):
Publication Date:
Journal Name:
Proceedings of Machine Learning Research
Sponsoring Org:
National Science Foundation
More Like this
  1. Adversarial training (AT) is a widely recognized defense mechanism to gain the robustness of deep neural networks against adversarial attacks. It is built on min-max optimization (MMO), where the minimizer (i.e., defender) seeks a robust model to minimize the worst-case training loss in the presence of adversarial examples crafted by the maximizer (i.e., attacker). However, the conventional MMO method makes AT hard to scale. Thus, FAST-AT (Wong et al., 2020) and other recent algorithms attempt to simplify MMO by replacing its maximization step with the single gradient sign-based attack generation step. Although easy to implement, FAST-AT lacks theoretical guarantees, and its empirical performance is unsatisfactory due to the issue of robust catastrophic overfitting when training with strong adversaries. In this paper, we advance FAST-AT from the fresh perspective of bi-level optimization (BLO). We first show that the commonly used FAST-AT is equivalent to using a stochastic gradient algorithm to solve a linearized BLO problem involving a sign operation. However, the discrete nature of the sign operation makes it difficult to understand the algorithm performance. Inspired by BLO, we design and analyze a new set of robust training algorithms termed Fast Bilevel AT (FAST-BAT), which effectively defends sign-based projected gradient descentmore »(PGD) attacks without using any gradient sign method or explicit robust regularization. In practice, we show our method yields substantial robustness improvements over baselines across multiple models and datasets« less
  2. A broad class of unsupervised deep learning methods such as Generative Adversarial Networks (GANs) involve training of overparameterized models where the number of parameters of the model exceeds a certain threshold. Indeed, most successful GANs used in practice are trained using overparameterized generator and discriminator networks, both in terms of depth and width. A large body of work in supervised learning have shown the importance of model overparameterization in the convergence of the gradient descent (GD) to globally optimal solutions. In contrast, the unsupervised setting and GANs in particular involve non-convex concave mini-max optimization problems that are often trained using Gradient Descent/Ascent (GDA). The role and benefits of model overparameterization in the convergence of GDA to a global saddle point in non-convex concave problems is far less understood. In this work, we present a comprehensive analysis of the importance of model overparameterization in GANs both theoretically and empirically. We theoretically show that in an overparameterized GAN model with a 1-layer neural network generator and a linear discriminator, GDA converges to a global saddle point of the underlying non-convex concave min-max problem. To the best of our knowledge, this is the first result for global convergence of GDA in such settings.more »Our theory is based on a more general result that holds for a broader class of nonlinear generators and discriminators that obey certain assumptions (including deeper generators and random feature discriminators). Our theory utilizes and builds upon a novel connection with the convergence analysis of linear timevarying dynamical systems which may have broader implications for understanding the convergence behavior of GDA for non-convex concave problems involving overparameterized models. We also empirically study the role of model overparameterization in GANs using several large-scale experiments on CIFAR-10 and Celeb-A datasets. Our experiments show that overparameterization improves the quality of generated samples across various model architectures and datasets. Remarkably, we observe that overparameterization leads to faster and more stable convergence behavior of GDA across the board.« less
  3. Current deep neural networks (DNNs) are vulnerable to adversarial attacks, where adversarial perturbations to the inputs can change or manipulate classification. To defend against such attacks, an effective and popular approach, known as adversarial training (AT), has been shown to mitigate the negative impact of adversarial attacks by virtue of a min-max robust training method. While effective, it remains unclear whether it can successfully be adapted to the distributed learning context. The power of distributed optimization over multiple machines enables us to scale up robust training over large models and datasets. Spurred by that, we propose distributed adversarial training (DAT), a large-batch adversarial training framework implemented over multiple machines. We show that DAT is general, which supports training over labeled and unlabeled data, multiple types of attack generation methods, and gradient compression operations favored for distributed optimization. Theoretically, we provide, under standard conditions in the optimization theory, the convergence rate of DAT to the first-order stationary points in general non-convex settings. Empirically, we demonstrate that DAT either matches or outperforms state-of-the-art robust accuracies and achieves a graceful training speedup (e.g., on ResNet–50 under ImageNet).
  4. It has been shown that adversaries can craft example inputs to neu- ral networks which are similar to legitimate inputs but have been created to purposely cause the neural network to misclassify the input. These adversarial examples are crafted, for example, by cal- culating gradients of a carefully defined loss function with respect to the input. As a countermeasure, some researchers have tried to design robust models by blocking or obfuscating gradients, even in white-box settings. Another line of research proposes introducing a separate detector to attempt to detect adversarial examples. This approach also makes use of gradient obfuscation techniques, for example, to prevent the adversary from trying to fool the detector. In this paper, we introduce stochastic substitute training, a gray-box approach that can craft adversarial examples for defenses which obfuscate gradients. For those defenses that have tried to make models more robust, with our technique, an adversary can craft ad- versarial examples with no knowledge of the defense. For defenses that attempt to detect the adversarial examples, with our technique, an adversary only needs very limited information about the defense to craft adversarial examples. We demonstrate our technique by applying it against two defenses which make models moremore »robust and two defenses which detect adversarial examples« less
  5. Modern neural networks are often quite wide, causing large memory and computation costs. It is thus of great interest to train a narrower network. However, training narrow neural nets remains a challenging task. We ask two theoretical questions: Can narrow networks have as strong expressivity as wide ones? If so, does the loss function exhibit a benign optimization landscape? In this work, we provide partially affirmative answers to both questions for 1-hidden-layer networks with fewer than n (sample size) neurons when the activation is smooth. First, we prove that as long as the width m>=2n=d (where d is the input dimension), its expressivity is strong, i.e., there exists at least one global minimizer with zero training loss. Second, we identify a nice local region with no local-min or saddle points. Nevertheless, it is not clear whether gradient descent can stay in this nice region. Third, we consider a constrained optimization formulation where the feasible region is the nice local region, and prove that every KKT point is a nearly global minimizer. It is expected that projected gradient methods converge to KKT points under mild technical conditions, but we leave the rigorous convergence analysis to future work. Thorough numerical results showmore »that projected gradient methods on this constrained formulation significantly outperform SGD for training narrow neural nets.« less