skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Deforestation and land use and land cover changes in protected areas of the Brazilian Cerrado: impacts on the fire-driven emissions of fine particulate aerosols pollutants
Award ID(s):
1950080
PAR ID:
10217378
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Remote Sensing Letters
Volume:
12
Issue:
1
ISSN:
2150-704X
Page Range / eLocation ID:
79 to 92
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We are currently living in the era of big data. The volume of collected or archived geospatial data for land use and land cover (LULC) mapping including remotely sensed satellite imagery and auxiliary geospatial datasets is increasing. Innovative machine learning, deep learning algorithms, and cutting-edge cloud computing have also recently been developed. While new opportunities are provided by these geospatial big data and advanced computer technologies for LULC mapping, challenges also emerge for LULC mapping from using these geospatial big data. This article summarizes the review studies and research progress in remote sensing, machine learning, deep learning, and geospatial big data for LULC mapping since 2015. We identified the opportunities, challenges, and future directions of using geospatial big data for LULC mapping. More research needs to be performed for improved LULC mapping at large scales. 
    more » « less
  2. Land Use and Land Cover Changes (LULCC) are occurring rapidly around the globe, particularly in developing island nations. We use the lens of the United Nations’ Sustainable Development Goals (SDG) to determine potential policies to address LULCC due to increasing population, suburbia, and rubber plantations in Semarang, Indonesia between 2006 and 2015. Using remote sensing, overlay analysis, optimized hot spot analysis, expert validation, and Continuous Change Detection and Classification, we found that there was a spread of urban landscapes towards the southern and western portions of Semarang that had previously been occupied by forests, plantations, agriculture, and aquaculture. We also witnessed a transition in farming from agriculture to rubber plantations, a cash crop. The implications of this study show that these geospatial analyses and big data can be used to characterize the SDGs, the complex interplay of these goals, and potentially alleviate some of the conflicts between disparate SDGs. We recommend certain policies that can assist in preserving the terrestrial ecosystem of Semarang (SDG 15) while creating a sustainable city (SDG 11, SDG 9) and providing sufficient work for individuals (SDG 1) in a growing economy (SDG 8) while simultaneously maintaining a sufficient food supply (SDG 2). 
    more » « less
  3. null (Ed.)
  4. Abstract While the signs of the sensitivities of surface temperature (Ts) to land use and land cover change‐induced biophysical changes are relatively well understood, their exact magnitude and how their magnitude depends on the scale characterizing the size of the change remain elusive. In this study, we compare the sensitivities of surface temperature to changes in surface albedo and surface water availability from three analytical/semianalytical models, which are designed for small (<1 km), intermediate (from ∼1 to ∼10 km), and large (>10–20 km) scales. Results suggest that the sensitivities of surface temperature to biophysical changes are scale dependent due to atmospheric feedbacks. Our results demonstrate that it is important to consider the scale and the associated atmospheric feedbacks when quantifying the sensitivities of surface temperature to biophysical changes. 
    more » « less