Abstract The Sustainable Development Goals (SDGs) adopted by the United Nations in 2015 constitute a set of 17 global goals established as a blueprint for achieving a more sustainable and equitable world for humanity. As part of the SDGs, target 14.3 is focuses on minimizing and addressing the impacts of Ocean Acidification (OA). We argue that moving forward in meeting the targets related to pH levels in the coastal ocean can be facilitated through accounting for various drivers of pH change, which are associated with advancing a suite of SDG goals. Addressing ‘coastal acidification’ via a suite of linked SDGs may help avoid inaction through connecting global phenomena with local impacts and drivers. This in turn can provide opportunities for designing novel place-based actions or partnerships that can aid and provide synergies for the joint implementation of programs and policies that tackle a suite of SDGs and the specific targets related to coastal ocean pH. 
                        more » 
                        « less   
                    
                            
                            Analysis of Land Use and Land Cover Changes through the Lens of SDGs in Semarang, Indonesia
                        
                    
    
            Land Use and Land Cover Changes (LULCC) are occurring rapidly around the globe, particularly in developing island nations. We use the lens of the United Nations’ Sustainable Development Goals (SDG) to determine potential policies to address LULCC due to increasing population, suburbia, and rubber plantations in Semarang, Indonesia between 2006 and 2015. Using remote sensing, overlay analysis, optimized hot spot analysis, expert validation, and Continuous Change Detection and Classification, we found that there was a spread of urban landscapes towards the southern and western portions of Semarang that had previously been occupied by forests, plantations, agriculture, and aquaculture. We also witnessed a transition in farming from agriculture to rubber plantations, a cash crop. The implications of this study show that these geospatial analyses and big data can be used to characterize the SDGs, the complex interplay of these goals, and potentially alleviate some of the conflicts between disparate SDGs. We recommend certain policies that can assist in preserving the terrestrial ecosystem of Semarang (SDG 15) while creating a sustainable city (SDG 11, SDG 9) and providing sufficient work for individuals (SDG 1) in a growing economy (SDG 8) while simultaneously maintaining a sufficient food supply (SDG 2). 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1827024
- PAR ID:
- 10358884
- Date Published:
- Journal Name:
- Sustainability
- Volume:
- 14
- Issue:
- 13
- ISSN:
- 2071-1050
- Page Range / eLocation ID:
- 7592
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Synergies and trade-offs among the United Nations Sustainable Development Goals (SDGs) have been hotly debated. Although the world is increasingly metacoupled (socioeconomic-environmental interactions within and across adjacent or distant systems), there is little understanding of the impacts of globally widespread and important flows on enhancing or compromising sustainability in different systems. Here, we used a new integrated framework to guide SDG synergy and trade-off analysis within and across systems, as influenced by cross-boundary tourism and wildlife translocations. The world’s terrestrial protected areas alone receive approximately 8 billion visits per year, generating a direct economic impact of US $600 billion. Globally, more than 5000 animal species and 29,000 plant species are traded across country borders, and the wildlife trade has arguably contributed to zoonotic disease worldwide, such as the ongoing COVID-19 pandemic. We synthesized 22 cases of tourism and wildlife translocations across six continents and found 33 synergies and 14 trade-offs among 10 SDGs within focal systems and across spillover systems. Our study provides an empirical demonstration of SDG interactions across spillover systems and insights for holistic sustainability governance, contributing to fostering synergies and reducing trade-offs to achieve global sustainable development in the metacoupled Anthropocene.more » « less
- 
            null (Ed.)Sustainable development (SD) policies targeting marine economic sectors, designed to alleviate poverty and conserve marine ecosystems, have proliferated in recent years. Many developing countries are providing poor fishing households with new fishing boats (fishing capital) that can be used further offshore as a means to improve incomes and relieve fishing pressure on nearshore fish stocks. These kinds of policies are a marine variant of traditional SD policies focused on agriculture. Here, we evaluate ex ante economic and environmental impacts of provisions of fishing and agricultural capital, with and without enforcement of fishing regulations that prohibit the use of larger vessels in nearshore habitats. Combining methods from development economics, natural resource economics, and marine ecology, we use a unique dataset and modeling framework to account for linkages between households, business sectors, markets, and local fish stocks. We show that the policies investing capital in local marine fisheries or agricultural sectors achieve income gains for targeted households, but knock-on effects lead to increased harvest of nearshore fish, making them unlikely to achieve conservation objectives in rural coastal economies. However, pairing an agriculture stimulus with increasing enforcement of existing fisheries’ regulations may lead to a win–win situation. While marine-based policies could be an important tool to achieve two of the United Nations Sustainable Development Goals (alleviate poverty and protect vulnerable marine resources), their success is by no means assured and requires consideration of land and marine socioeconomic linkages inherent in rural economies.more » « less
- 
            Abstract Domestic attempts to advance the Sustainable Development Goals (SDGs) in a country can have synergistic and/or trade-off effects on the advancement of SDGs in other countries. Transboundary SDG interactions can be delivered through various transmission channels (e.g., trade, river flow, ocean currents, and air flow). This study quantified the transboundary interactions through these channels between 768 pairs of SDG indicators. The results showed that although high income countries only comprised 14.18% of the global population, they contributed considerably to total SDG interactions worldwide (60.60%). Transboundary synergistic effects via international trade were 14.94% more pronounced with trade partners outside their immediate geographic vicinity than with neighbouring ones. Conversely, nature-caused flows (including river flow, ocean currents, and air flow) resulted in 39.29% stronger transboundary synergistic effects among neighboring countries compared to non-neighboring ones. To facilitate the achievement of SDGs worldwide, it is essential to enhance collaboration among countries and leverage transboundary synergies.more » « less
- 
            null (Ed.)Abstract Land-use and land-cover change (LULCC) is one of the most important forcings affecting climate in the past century. This study evaluates the global and regional LULCC impacts in 1950–2015 by employing an annually updated LULCC map in a coupled land–atmosphere–ocean model. The difference between LULCC and control experiments shows an overall land surface temperature (LST) increase by 0.48 K in the LULCC regions and a widespread LST decrease by 0.18 K outside the LULCC regions. A decomposed temperature metric (DTM) is applied to quantify the relative contribution of surface processes to temperature changes. Furthermore, while precipitation in the LULCC areas is reduced in agreement with declined evaporation, LULCC causes a southward displacement of the intertropical convergence zone (ITCZ) with a narrowing by 0.5°, leading to a tripole anomalous precipitation pattern over the warm pool. The DTM shows that the temperature response in LULCC regions results from the competing effect between increased albedo (cooling) and reduced evaporation (warming). The reduced evaporation indicates less atmospheric latent heat release in convective processes and thus a drier and cooler troposphere, resulting in a reduction in surface cooling outside the LULCC regions. The southward shift of the ITCZ implies a northward cross-equatorial energy transport anomaly in response to reduced latent/sensible heat of the atmosphere in the Northern Hemisphere, where LULCC is more intensive. Tropospheric cooling results in the equatorward shift of the upper-tropospheric westerly jet in both hemispheres, which, in turn, leads to an equatorward narrowing of the Hadley circulation and ITCZ.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    