Children learn powerful internal models of the world around them from a few years of egocentric visual experience. Can such internal models be learned from a child's visual experience with highly generic learning algorithms or do they require strong inductive biases? Recent advances in collecting large-scale, longitudinal, developmentally realistic video datasets and generic self-supervised learning (SSL) algorithms are allowing us to begin to tackle this nature vs. nurture question. However, existing work typically focuses on image-based SSL algorithms and visual capabilities that can be learned from static images (e.g. object recognition), thus ignoring temporal aspects of the world. To close this gap, here we train self-supervised video models on longitudinal, egocentric headcam recordings collected from a child over a two year period in their early development (6-31 months). The resulting models are highly effective at facilitating the learning of action concepts from a small number of labeled examples; they have favorable data size scaling properties; and they display emergent video interpolation capabilities. Video models also learn more robust object representations than image-based models trained with the exact same data. These results suggest that important temporal aspects of a child's internal model of the world may be learnable from their visual experience using highly generic learning algorithms and without strong inductive biases.
more »
« less
Self-supervised learning through the eyes of a child
Within months of birth, children develop meaningful expectations about the world around them. How much of this early knowledge can be explained through generic learning mechanisms applied to sensory data, and how much of it requires more substantive innate inductive biases? Addressing this fundamental question in its full generality is currently infeasible, but we can hope to make real progress in more narrowly defined domains, such as the development of high-level visual categories, thanks to improvements in data collecting technology and recent progress in deep learning. In this paper, our goal is precisely to achieve such progress by utilizing modern self-supervised deep learning methods and a recent longitudinal, egocentric video dataset recorded from the perspective of three young children (Sullivan et al., 2020). Our results demonstrate the emergence of powerful, high-level visual representations from developmentally realistic natural videos using generic self-supervised learning objectives.
more »
« less
- Award ID(s):
- 1922658
- PAR ID:
- 10217558
- Date Published:
- Journal Name:
- Advances in Neural Information Processing Systems 33 (NeurIPS 2020)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Multi-source entity linkage focuses on integrating knowledge from multiple sources by linking the records that represent the same real world entity. This is critical in high-impact applications such as data cleaning and user stitching. The state-of-the-art entity linkage pipelines mainly depend on supervised learning that requires abundant amounts of training data. However, collecting well-labeled training data becomes expensive when the data from many sources arrives incrementally over time. Moreover, the trained models can easily overfit to specific data sources, and thus fail to generalize to new sources due to significant differences in data and label distributions. To address these challenges, we present AdaMEL, a deep transfer learning framework that learns generic high-level knowledge to perform multi-source entity linkage. AdaMEL models the attribute importance that is used to match entities through an attribute-level self-attention mechanism, and leverages the massive unlabeled data from new data sources through domain adaptation to make it generic and data-source agnostic. In addition, AdaMEL is capable of incorporating an additional set of labeled data to more accurately integrate data sources with different attribute importance. Extensive experiments show that our framework achieves state-of-the-art results with 8.21% improvement on average over methods based on supervised learning. Besides, it is more stable in handling different sets of data sources in less runtime.more » « less
-
Self-supervised learning aims to learn good representations with unlabeled data. Recent works have shown that larger models benefit more from self-supervised learning than smaller models. As a result, the gap between supervised and self-supervised learning has been greatly reduced for larger models. In this work, instead of designing a new pseudo task for self-supervised learning, we develop a model compression method to compress an already learned, deep self-supervised model (teacher) to a smaller one (student). We train the student model so that it mimics the relative similarity between the datapoints in the teacher’s embedding space. For AlexNet, our method outperforms all previous methods including the fully supervised model on ImageNet linear evaluation (59.0% compared to 56.5%) and on nearest neighbor evaluation (50.7% compared to 41.4%). To the best of our knowledge, this is the first time a self-supervised AlexNet has outperformed supervised one on ImageNet classification.more » « less
-
In this work, we use a generative adversarial network (GAN) to train crowd counting networks using minimal data. We describe how GAN objectives can be modified to allow for the use of unlabeled data to benefit inference training in semi-supervised learning. More generally, we explain how these same methods can be used in more generic multiple regression target semi-supervised learning, with crowd counting being a demonstrative example. Given a convolutional neural network (CNN) with capabilities equivalent to the discriminator in the GAN, we provide experimental results which show that our GAN is able to outperform the CNN even when the CNN has access to significantly more labeled data. This presents the potential of training such networks to high accuracy with little data. Our primary goal is not to outperform the state-of-the-art using an improved method on the entire dataset, but instead we work to show that through semi-supervised learning we can reduce the data required to train an inference network to a given accuracy. To this end, systematic experiments are performed with various numbers of images and cameras to show under which situations the semi-supervised GANs can improve results.more » « less
-
Observations abound about the power of visual imagery in human intelligence, from how Nobel prize-winning physicists make their discoveries to how children understand bedtime stories. These observations raise an important question for cognitive science, which is, what are the computations taking place in someone’s mind when they use visual imagery? Answering this question is not easy and will require much continued research across the multiple disciplines of cognitive science. Here, we focus on a related and more circumscribed question from the perspective of artificial intelligence (AI): If you have an intelligent agent that uses visual imagery-based knowledge representations and reasoning operations, then what kinds of problem solving might be possible, and how would such problem solving work? We highlight recent progress in AI toward answering these questions in the domain of visuospatial reasoning, looking at a case study of how imagery-based artificial agents can solve visuospatial intelligence tests. In particular, we first examine several variations of imagery-based knowledge representations and problem-solving strategies that are sufficient for solving problems from the Raven’s Progressive Matrices intelligence test. We then look at how artificial agents, instead of being designed manually by AI researchers, might learn portions of their own knowledge and reasoning procedures from experience, including learning visuospatial domain knowledge, learning and generalizing problem-solving strategies, and learning the actual definition of the task in the first place.more » « less
An official website of the United States government

