skip to main content

Title: AI, visual imagery, and a case study on the challenges posed by human intelligence tests

Observations abound about the power of visual imagery in human intelligence, from how Nobel prize-winning physicists make their discoveries to how children understand bedtime stories. These observations raise an important question for cognitive science, which is, what are the computations taking place in someone’s mind when they use visual imagery? Answering this question is not easy and will require much continued research across the multiple disciplines of cognitive science. Here, we focus on a related and more circumscribed question from the perspective of artificial intelligence (AI): If you have an intelligent agent that uses visual imagery-based knowledge representations and reasoning operations, then what kinds of problem solving might be possible, and how would such problem solving work? We highlight recent progress in AI toward answering these questions in the domain of visuospatial reasoning, looking at a case study of how imagery-based artificial agents can solve visuospatial intelligence tests. In particular, we first examine several variations of imagery-based knowledge representations and problem-solving strategies that are sufficient for solving problems from the Raven’s Progressive Matrices intelligence test. We then look at how artificial agents, instead of being designed manually by AI researchers, might learn portions of their own knowledge and reasoning procedures more » from experience, including learning visuospatial domain knowledge, learning and generalizing problem-solving strategies, and learning the actual definition of the task in the first place.

« less
Authors:
Award ID(s):
1730044
Publication Date:
NSF-PAR ID:
10202822
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
117
Issue:
47
Page Range or eLocation-ID:
p. 29390-29397
ISSN:
0027-8424
Publisher:
Proceedings of the National Academy of Sciences
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we present the Visuospatial Reasoning Environment for Experimentation (VREE). VREE provides a simulated environment where intelligent agents interact with virtual objects while solving different visuospatial reasoning tasks. This paper shows how VREE is valuable for studying the sufficiency of visual imagery approaches for a large number of visuospatial reasoning tasks as well as how diverse strategies can be represented and studied within a single task. We present results from computational experiments using VREE on the block design task and on numerous subtests from the Leiter-R test battery on nonverbal intelligence.
  2. Analogical reasoning fundamentally involves exploiting redundancy in a given task, but there are many different ways an intelligent agent can choose to define and exploit redundancy, often resulting in very different levels of task performance. We explore such variations in analogical reasoning within the domain of geometric matrix reasoning tasks, namely on the Raven’s Standard Progressive Matrices intelligence test. We show how different analogical constructions used by the same basic visual-imagery-based computational model—varying only in how they “slice” a matrix problem into parts and do search and optimization within/across these parts—achieve very different levels of test performance, ranging from 13/60more »correct all the way up to 57/60 correct. Our findings suggest that the ability to select or build effective high-level analogical constructions can be as important as an agent’s competencies in low-level reasoning skills, which raises interesting open questions about the extent to which building the “right” analogies might contribute to individual differences in human matrix reasoning performance, and how intelligent agents might learn to build or select from among different analogical constructions in the first place.« less
  3. Visuospatial reasoning refers to a diverse set of skills that involve thinking about space and time. An artificial agent with access to a sufficiently large set of visuospatial reasoning skills might be able to generalize its reasoning ability to an unprecedented expanse of tasks including portions of many popular intelligence tests. In this paper, we stress the importance of a developmental approach to the study of visuospatial reasoning, with an emphasis on fundamental skills. A comprehensive benchmark, with properties we outline in this paper including breadth, depth, explainability, and domain-specificity, would encourage and measure the genesis of such a skillset.more »Lacking an existing benchmark that satisfies these properties, we outline the design of a novel test in this paper. Such a benchmark would allow for expanding analysis of existing datasets’ and agents’ applicability to the problem of generalized visuospatial reasoning.« less
  4. Abstract Axiomatic Design (AD) provides a powerful thinking framework for solving complex engineering problems through the concept of design domains and diligent mapping and decomposition between functional and physical domains. Despite this utility, AD is yet to be implemented for widespread use by design practitioners solving real world problems in industry and exists primarily in the realm of academia. This is due, in part, to a high level of design expertise and familiarity with its methodology required to apply the AD approach effectively. It is difficult to correctly identify, extract, and abstract top-level functional requirements (FRs) based on early-stage designmore »research. Furthermore, guiding early-stage design by striving to maintain functional independence, the first Axiom, is difficult at a systems level without explicit methods of quantifying the relationship between high-level FRs and design parameters (DPs). To address these challenges, Artificial Intelligence (AI) methods, specifically in deep learning (DL) assisted Natural Language Processing (NLP), have been applied to represent design knowledge for machines to understand, and, following AD principles, support the practice of human designers. NLP-based question-answering is demonstrated to automate early-stage identification of FRs and to assist design decomposition by recursively mapping and traversing down along the FR-DP hierarchical structure. Functional coupling analysis could then be conducted with vectorized FRs and DPs from NLP-based language embeddings. This paper presents a framework for how AI can be applied to design based on the principles of AD, which will enable a virtual design assistant system based on both human and machine intelligence.« less
  5. Today’s classrooms are remarkably different from those of yesteryear. In place of individual students responding to the teacher from neat rows of desks, one more typically finds students working in groups on projects, with a teacher circulating among groups. AI applications in learning have been slow to catch up, with most available technologies focusing on personalizing or adapting instruction to learners as isolated individuals. Meanwhile, an established science of Computer Supported Collaborative Learning has come to prominence, with clear implications for how collaborative learning could best be supported. In this contribution, I will consider how intelligence augmentation could evolve tomore »support collaborative learning as well as three signature challenges of this work that could drive AI forward. In conceptualizing collaborative learning, Kirschner and Erkens (2013) provide a useful 3x3 framework in which there are three aspects of learning (cognitive, social and motivational), three levels (community, group/team, and individual) and three kinds of pedagogical supports (discourse-oriented, representation-oriented, and process-oriented). As they engage in this multiply complex space, teachers and learners are both learning to collaborate and collaborating to learn. Further, questions of equity arise as we consider who is able to participate and in which ways. Overall, this analysis helps us see the complexity of today’s classrooms and within this complexity, the opportunities for augmentation or “assistance to become important and even essential. An overarching design concept has emerged in the past 5 years in response to this complexity, the idea of intelligent augmentation for “orchestrating” classrooms (Dillenbourg, et al, 2013). As a metaphor, orchestration can suggest the need for a coordinated performance among many agents who are each playing different roles or voicing different ideas. Practically speaking, orchestration suggests that “intelligence augmentation” could help many smaller things go well, and in doing so, could enable the overall intention of the learning experience to succeed. Those smaller things could include helping the teacher stay aware of students or groups who need attention, supporting formation of groups or transitions from one activity to the next, facilitating productive social interactions in groups, suggesting learning resources that would support teamwork, and more. A recent panel of AI experts identified orchestration as an overarching concept that is an important focus for near-term research and development for intelligence augmentation (Roschelle, Lester & Fusco, 2020). Tackling this challenging area of collaborative learning could also be beneficial for advancing AI technologies overall. Building AI agents that better understand the social context of human activities has broad importance, as does designing AI agents that can appropriately interact within teamwork. Collaborative learning has trajectory over time, and designing AI systems that support teams not just with a short term recommendation or suggestion but in long-term developmental processes is important. Further, classrooms that are engaged in collaborative learning could become very interesting hybrid environments, with multiple human and AI agents present at once and addressing dual outcome goals of learning to collaborate and collaborating to learn; addressing a hybrid environment like this could lead to developing AI systems that more robustly help many types of realistic human activity. In conclusion, the opportunity to make a societal impact by attending to collaborative learning, the availability of growing science of computer-supported collaborative learning and the need to push new boundaries in AI together suggest collaborative learning as a challenge worth tackling in coming years.« less