skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Controlling Silver Ion Release of Silver Nanoparticles with Hybrid Lipid Membranes with Long-Chain Hydrophobic Thiol Anchors Decreases in Vivo Toxicity
Silver nanoparticles (AgNPs) are widely used in various commercial and industrial applicationsbecause of their antimicrobial properties.The behavior and toxicity of AgNPs are likely controlled by physicochemical properties such as size, shape, and surface chemistry; however, studies of these properties are often confounded by Ag+ ion dissolution. Here a suite of spherical and triangular shaped AgNPs were prepared with increasing amounts of surface protection from their surface-coating comprising of citrate (Cit) only or a mixture  more » « less
Award ID(s):
2115080
PAR ID:
10217599
Author(s) / Creator(s):
Date Published:
Journal Name:
International journal of engineering research and applications
Volume:
10
Issue:
9
ISSN:
2248-9622
Page Range / eLocation ID:
12-28
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Silver nanoparticles (AgNPs) are widely used in commerce, however, the effect of their physicochemical properties on toxicity remains debatable because of the confounding presence of Ag+ ions. Thus, we designed a series of AgNPs that are stable to surface oxidation and Ag+ ion release. AgNPs were coated with a hybrid lipid membrane comprised of L-phosphatidylcholine (PC), sodium oleate (SOA), and a stoichiometric amount of hexanethiol (HT) to produce oxidant-resistant AgNPs, Ag–SOA–PC–HT. The stability of 7-month aged, 20–100 nm Ag–SOA–PC–HT NPs were assessed using UV–Vis, dynamic light scattering (DLS), and inductively coupled plasma mass spectrometry (ICP-MS), while the toxicity of the nanomaterials was assessed using a well-established, 5-day embryonic zebrafish assay at concentrations ranging from 0–12 mg/L. There was no change in the size of the AgNPs from freshly made samples or 7-month aged samples and minimal Ag+ ion release (<0.2%) in fishwater (FW) up to seven days. Toxicity studies revealed AgNP size- and concentration-dependent effects. Increased mortality and sublethal morphological abnormalities were observed at higher concentrations with smaller nanoparticle sizes. This study, for the first time, determined the effect of AgNP size on toxicity in the absence of Ag+ ions as a confounding variable. 
    more » « less
  2. null (Ed.)
    The controlled synthesis of stable silver nanoparticles (AgNPs), that do not undergo surface oxidation and Ag + ion dissolution, continues to be a major challenge. Here the synthesis of robust hybrid lipid-coated AgNPs, comprised of l -α-phosphatidylcholine (PC) membranes anchored by a stoichiometric amount of long-chained hydrophobic thiols and sodium oleate (SOA) as hydrophobic binding partners, that do not undergo surface oxidation and Ag + ion dissolution, is described. UV-Visible (UV-Vis) spectroscopy, transmission electron microscopy (TEM), and inductively coupled plasma mass spectrometry (ICP-MS) demonstrate that in the presence of strong oxidants, such as potassium cyanide (KCN), the hybrid lipid-coated AgNPs are stable and do not undergo surface oxidation even in the presence of membrane destabilizing surfactants. UV-Vis studies show that the stability of hybrid lipid-coated AgNPs of various sizes and shapes is dependent on the length of the thiol hydrocarbon chain and can be ranked in the order of increasing stability as follows: propanethiol (PT) < hexanethiol (HT) ≤ decanethiol (DT). UV-Vis and ICP-MS studies show that the hybrid lipid-coated AgNPs do not change in size or shape confirming that the AgNPs do not undergo surface oxidation and Ag + ion dissolution when placed in the presence of strong oxidants, chlorides, thiols, and low pH. Long-term stability studies, over 21 days, show that the hybrid lipid-coated AgNPs do not release Ag + ions and are more stable. Overall, these studies demonstrate hybrid membrane encapsulation of nanomaterials is a viable method for stabilizing AgNPs in a “shape-locked” form that is unable to undergo surface oxidation, Ag + ion release, aging, or shape conversion. More importantly, this design strategy is a simple approach to the synthesis and stabilization of AgNPs for a variety of biomedical and commercial applications where Ag + ion release and toxicity is a concern. With robust and shielded AgNPs, investigators can now evaluate and correlate how the physical features of AgNPs influence toxicity without the confounding factor of Ag + ions present in samples. This design strategy also provides an opportunity where the membrane composition can be tuned to control the release rate of Ag + ions for optimizing antimicrobial activity. 
    more » « less
  3. Producing silver nanoparticles (AgNPs) of homogenous shapes and sizes that are stable for oxidation remains challeng-ing. A fast and accessible synthesis is presented to tune the homogeneity of triangular plates (AgNPLs) using light. This study showed AgNPs of varying shapes (spheres, rounded triangles, and rods), sizes (10-20 nm, 40 nm, and 33 nm, re-spectively), and surface chemistry (citrate and PVP capping agents) undergo a light-induced conversion to 75-85% sharp AgNPLs with narrow-localized surface plasmon resonance (LSPR) band with λmax at 680 nm and an average edge length of 40 nm ± 5.6 nm as confirmed by UV-Vis spectroscopy and transmission electron microscopy (TEM) respectively. Fur-ther exploration into the mechanism confirmed that Ag+ ions, O2, and light are critical parameters for the light-induced transformation of AgNSs to AgNPLs. Under an inert atmosphere, shape transformation is inhibited, reinforcing the essen-tial role of O2 in the process. More remarkably, when AgNPs of any size or shape are coated with a hybrid lipid-coated membrane, the AgNPs had exceptional photostability, showing no change LSPR band, underscoring their resistance to photooxidation and shape transformation even in the presence of excess Ag+ ions, O2, and AgNSs. The results highlight the importance of light in tuning the homogeneity of AgNPs and the superior stabilizing effect of hybrid lipid membranes. 
    more » « less
  4. Abstract Nanoelectrochemistry allows for the investigation of the interaction of per‐ and polyfluoroalkyl substances (PFASs) with silver nanoparticles (AgNPs) and the elucidation of the binding behaviour of PFASs to nanoscale surfaces with high sensitivity. Mechanistic studies supported by single particle collision electrochemistry (SPCE), spectroscopic and density functional theory (DFT) calculations indicate the capability of polyfluorooctane sulfonic acid (PFOS), a representative PFAS, to selectively bind and induce aggregation of AgNPs. Single‐particle measurements provide identification of the “discrete” AgNPs agglomeration (e.g. 2–3 NPs) formed through the inter‐particles F−F interactions and the selective replacement of the citrate stabilizer by the sulfonate of the PFOS. Such interactions are characteristic only for long chain PFAS (‐SO3) providing a means to selectively identify these substances down to ppt levels. Measuring and understanding the interactions of PFAS at nanoscale surfaces are crucial for designing ultrasensitive methods for detection and for modelling and predicting their interaction in the environment. 
    more » « less
  5. Abstract Silver nanoparticles (AgNPs) are one of the most used engineered nanomaterials. Despite progress in assessing their environmental implications, knowledge gaps exist concerning the metabolic perturbations induced by AgNPs on phytoplankton, essential organisms in global biogeochemical cycles and food-web dynamics. We combine targeted metabolomics, biouptake and physiological response studies to elucidate metabolic perturbations in algaPoterioochromonas malhamensisinduced by AgNPs and dissolved Ag. We show time-dependent perturbation of the metabolism of amino acids, nucleotides, fatty acids, tricarboxylic acids, photosynthesis and photorespiration by both Ag-treatments. The results suggest that dissolved Ag ions released by AgNPs are the major toxicity driver; however, AgNPs internalized in food vacuoles contributed to the perturbation of amino acid metabolism, TCA cycle and oxidative stress. The metabolic perturbations corroborate the observed physiological responses. We highlight the potential of metabolomics as a tool for understanding the molecular basis for these metabolic and physiological changes, and for early detection of stress. 
    more » « less