This dataset includes chlorophyll-a concentrations, periphyton biomass estimates, water quality measurements, and qualitative observations from a large-scale mesocosm experiment conducted in the Green Lakes Watershed, Colorado. The experiment was designed to test how earlier lake ice-off and increased dissolved organic material (DOM), associated with terrestrial plant encroachment in alpine watersheds, interactively influence aquatic food webs. In fall 2019, twenty 2600L “megacosms” were established at Sandy Corner (3300 m ASL; 40.042289, -105.584006), left to fill with snowmelt, and maintained throughout the 2020 open water season. The experiment followed a 2 × 2 randomized block design manipulating ice-off timing (via black vs. beige tank coloration) and DOM inputs (presence/absence of willow leaf packs), with five replicates per treatment. All tanks were seeded with sediments and zooplankton from both alpine and montane lakes (Green Lake 1 and Green Lake 4), and instrumented with thermistors recording surface and hypolimnion temperature every two hours year-round. Periphyton growth was monitored using clay tiles, sampled across five time points. Chlorophyll-a concentrations were extracted from filtered water samples and analyzed spectrophotometrically. Periphyton biomass was estimated via ash-free dry mass (AFDM) determinations, based on the mass lost on combustion of material scraped from tiles. Water quality was measured 1–2 times weekly using a YSI ProPlus multiprobe and Li-Cor quantum sensor, and snow/ice cover was qualitatively assessed monthly during winter. 
                        more » 
                        « less   
                    
                            
                            The effects of dissolved organic matter from a native and an invasive plant species on juvenile Daphnia survival and growth
                        
                    
    
            Abstract Shifts in the composition of terrestrial plant communities could have significant effects on freshwater zooplankton due to changes in the quality of inputs of terrestrially derived dissolved organic matter (DOM). Leachate from native red maple (RM) and invasive Amur honeysuckle (AH) were used to explore the effects of DOM source on survival and growth of juvenile Daphnia ambigua. Prior research with both terrestrial and aquatic organisms indicates that AH-derived DOM has negative effects. Comparing bioassays in the presence and absence of algae with no additional DOM, RM- or AH-derived DOM, RM had stronger negative effects on both Daphnia survival and growth while AH only decreased growth. The negative effects seen in the presence and absence of algae provided evidence for both indirect and direct effects due to phytotoxicity and plant secondary compounds, respectively. DOM source may play a key role in regulating consumers in aquatic ecosystems. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1754276
- PAR ID:
- 10217683
- Editor(s):
- Beisner, Beatrix E
- Date Published:
- Journal Name:
- Journal of Plankton Research
- Volume:
- 42
- Issue:
- 4
- ISSN:
- 0142-7873
- Page Range / eLocation ID:
- 453 to 456
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Dissolved organic matter (DOM) is a heterogeneous mixture of organic compounds that is produced through both microbial degradation and abiotic leaching of solid phase organic matter, and by a wide range of metabolic processes in algae and higher plants. DOM is ubiquitous throughout the hydrologic cycle and plays an important role in watershed management for drinking water supply as well as many aspects of aquatic ecology and geochemistry. Due to its wide-ranging effects in natural waters and analytical challenges, the focal research questions regarding DOM have varied since the 1920s. A standard catchment-scale model has emerged to describe the environmental controls on DOM concentrations. Modest concentrations of DOM are found in atmospheric deposition, large increases occur in throughfall and shallow soil flow paths, and variable concentrations in surface waters occur largely as a result of the extent to which hydrologic flow paths encounter deeper mineral soils, wetlands or shallow organic-rich riparian soils. Both production and consumption of DOM occur in surface waters but appear to frequently balance, resulting in relatively constant concentrations with distance downstream in most streams and rivers. Across biomes the concentration and composition of DOM in flowing waters is driven largely by soil processes or direct inputs to channels, but high levels can be found in streams and rivers from the tropics to the poles. Seven central challenges and opportunities in the study of DOM should frame ongoing research. These include maintaining or establishing long-term records of changes in concentrations and fluxes over time, capitalizing on the use of sensors to describe short-term DOM dynamics in aquatic systems, integrating the full carbon cycle into understanding of watershed and aquatic DOM dynamics, understanding the role of DOM in evasion of greenhouse gases from inland waters, unraveling the enigma of dissolved organic nitrogen, documenting gross versus net DOM fluxes, and moving beyond an emphasis on functional ecological significance to understanding the evolutionary significance of DOM in a wide range of environments.more » « less
- 
            ABSTRACT Dissolved organic matter (DOM) comprises diverse compounds with variable bioavailability across aquatic ecosystems. The sources and quantities of DOM can influence microbial growth and community structure with effects on biogeochemical processes. To investigate the chemodiversity of labile DOM in tropical reef waters, we tracked microbial utilisation of over 3000 untargeted mass spectrometry ion features exuded from two coral and three algal species. Roughly half of these features clustered into over 500 biologically labile spectral subnetworks annotated to diverse structural superclasses, including benzenoids, lipids, organic acids, heterocyclics and phenylpropanoids, comprising on average one‐third of the ion richness and abundance within each chemical class. Distinct subsets of these labile compounds were exuded by algae and corals during the day and night, driving differential microbial growth and substrate utilisation. This study expands the chemical diversity of labile marine DOM with implications for carbon cycling in coastal environments.more » « less
- 
            Abstract Dissolved organic matter (DOM) is the foundation of the microbial loop and plays an important role in estuarine water quality and ecosystem metabolism. Because estuaries are influenced by DOM with different sources and composition, changing hydrologic regimes, and diverse microbial community assemblages, the biological fate of DOM (i.e., microbial degradation) differs across spatiotemporal scales and between DOM pools. To better understand controls on DOM degradation, we characterized the biogeochemical and physical conditions of the York River Estuary (YRE), a sub-estuary of the Chesapeake Bay in southeast Virginia (USA), during October 2018 and February, April, and July 2019. We then evaluated how these conditions influenced the degradation of dissolved organic carbon (DOC) and nitrogen (DON) and chromophoric dissolved organic matter (CDOM) by conducting parallel dark incubations of surface water collected along the YRE. Compared to other sampling dates, DOC reactivity (ΔDOC (%)) was over two-fold higher in October when freshwater discharge was lower, temperatures were warmer, and autochthonous, aquatic sources of DOC dominated. ΔDOC (%) was near zero when allochthonous, terrestrial sources of DOC were more abundant and when temperatures were cooler during higher discharge periods in February when precipitation in the Chesapeake Bay region was anomalously high. DON was up to six times less reactive than DOC and was sometimes produced during the incubations whereas ΔCDOM (%) was highly variable between sampling periods. Like ΔDOC (%), spatiotemporal patterns in ΔDON (%) were controlled primarily by hydrology and DOM source and composition. Our results show that higher freshwater discharge associated with prolonged wet periods decreased estuarine flushing time and increased the delivery of allochthonous DOM derived from terrestrial sources into coastal waters, resulting in lower rates of DOM degradation especially under cool conditions. While these findings provide evidence for seasonal variation in DOM degradation, shifting environmental conditions (e.g., increasing temperatures and precipitation) due to climate change may also have interactive effects on the magnitude and composition of DOM exported to estuaries and its subsequent reactivity.more » « less
- 
            This review focuses on recently characterized traits of the aquatic floating plant Lemna with an emphasis on its capacity to combine rapid growth with the accumulation of high levels of the essential human micronutrient zeaxanthin due to an unusual pigment composition not seen in other fast-growing plants. In addition, Lemna’s response to elevated CO2 was evaluated in the context of the source–sink balance between plant sugar production and consumption. These and other traits of Lemnaceae are compared with those of other floating aquatic plants as well as terrestrial plants adapted to different environments. It was concluded that the unique features of aquatic plants reflect adaptations to the freshwater environment, including rapid growth, high productivity, and exceptionally strong accumulation of high-quality vegetative storage protein and human antioxidant micronutrients. It was further concluded that the insensitivity of growth rate to environmental conditions and plant source–sink imbalance may allow duckweeds to take advantage of elevated atmospheric CO2 levels via particularly strong stimulation of biomass production and only minor declines in the growth of new tissue. It is proposed that declines in nutritional quality under elevated CO2 (due to regulatory adjustments in photosynthetic metabolism) may be mitigated by plant–microbe interaction, for which duckweeds have a high propensity.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    