skip to main content

Title: Deeper waters are changing less consistently than surface waters in a global analysis of 102 lakes
Abstract Globally, lake surface water temperatures have warmed rapidly relative to air temperatures, but changes in deepwater temperatures and vertical thermal structure are still largely unknown. We have compiled the most comprehensive data set to date of long-term (1970–2009) summertime vertical temperature profiles in lakes across the world to examine trends and drivers of whole-lake vertical thermal structure. We found significant increases in surface water temperatures across lakes at an average rate of + 0.37 °C decade −1 , comparable to changes reported previously for other lakes, and similarly consistent trends of increasing water column stability (+ 0.08 kg m −3 decade −1 ). In contrast, however, deepwater temperature trends showed little change on average (+ 0.06 °C decade −1 ), but had high variability across lakes, with trends in individual lakes ranging from − 0.68 °C decade −1 to + 0.65 °C decade −1 . The variability in deepwater temperature trends was not explained by trends in either surface water temperatures or thermal stability within lakes, and only 8.4% was explained by lake thermal region or local lake characteristics in a random forest analysis. These findings suggest that external drivers beyond our tested lake characteristics are important in explaining long-term trends in thermal structure, such as local to regional climate patterns or additional external anthropogenic influences.  more » « less
Award ID(s):
1754276 1950170 1851436 2025982
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Scientific Reports
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Climate change and other anthropogenic stressors have led to long-term changes in the thermal structure, including surface temperatures, deepwater temperatures, and vertical thermal gradients, in many lakes around the world. Though many studies highlight warming of surface water temperatures in lakes worldwide, less is known about long-term trends in full vertical thermal structure and deepwater temperatures, which have been changing less consistently in both direction and magnitude. Here, we present a globally-expansive data set of summertime in-situ vertical temperature profiles from 153 lakes, with one time series beginning as early as 1894. We also compiled lake geographic, morphometric, and water quality variables that can influence vertical thermal structure through a variety of potential mechanisms in these lakes. These long-term time series of vertical temperature profiles and corresponding lake characteristics serve as valuable data to help understand changes and drivers of lake thermal structure in a time of rapid global and ecological change. 
    more » « less
  2. Abstract

    Lake surface temperatures are warming in many regions and have the potential to alter seasonal thermal stratification. However, the effects of climate change on thermal stratification can be difficult to characterize because trends in thermal stratification can be regulated by changes in multiple climate variables and other characteristics, such as water clarity. Here, we use long‐term (1993–2017) data from near‐pristine Crater Lake (Oregon) to understand long‐term changes in the depth and strength of summer stratification, measured by the center of buoyancy and Schmidt Stability, respectively. The depth of stratification has shoaled significantly (2.4 m decade−1), while stratification strength exhibited no long‐term trend. Empirical observations and modeling scenarios demonstrate that atmospheric stilling at Crater Lake is associated with the 25‐year shoaling trend as spring wind speeds declined over the observation period. While summer lake surface water and air temperatures warmed during the study period, spring air temperatures were variable and correlated with summer Schmidt Stability. Our results indicate that warmer spring air temperature resulted in earlier onset of stratification and stronger summer stratification. The observed shoaling of stratification depth at Crater Lake may have important ecological consequences, especially for non‐motile primary producers who can become constrained within a thinner epilimnion and exposed to higher solar radiation and reduced upwelling of nutrients. Driven by climate changes, many large lakes may be experiencing similar trends in seasonal stratification.

    more » « less
  3. null (Ed.)
    Abstract. The concentration of oxygen is fundamental to lake water quality and ecosystem functioning through its control over habitat availability for organisms, redox reactions, and recycling of organic material. In many eutrophic lakes, oxygen depletion in the bottom layer (hypolimnion) occurs annually during summer stratification. The temporal and spatial extent of summer hypolimnetic anoxia is determined by interactions between the lake and its external drivers (e.g., catchment characteristics, nutrient loads, meteorology) as well as internal feedback mechanisms (e.g., organic matter recycling, phytoplankton blooms). How these drivers interact to control the evolution of lake anoxia over decadal timescales will determine, in part, the future lake water quality. In this study, we used a vertical one-dimensional hydrodynamic–ecological model (GLM-AED2) coupled with a calibrated hydrological catchment model (PIHM-Lake) to simulate the thermal and water quality dynamics of the eutrophic Lake Mendota (USA) over a 37 year period. The calibration and validation of the lake model consisted of a global sensitivity evaluation as well as the application of an optimization algorithm to improve the fit between observed and simulated data. We calculated stability indices (Schmidt stability, Birgean work, stored internal heat), identified spring mixing and summer stratification periods, and quantified the energy required for stratification and mixing. To qualify which external and internal factors were most important in driving the interannual variation in summer anoxia, we applied a random-forest classifier and multiple linear regressions to modeled ecosystem variables (e.g., stratification onset and offset, ice duration, gross primary production). Lake Mendota exhibited prolonged hypolimnetic anoxia each summer, lasting between 50–60 d. The summer heat budget, the timing of thermal stratification, and the gross primary production in the epilimnion prior to summer stratification were the most important predictors of the spatial and temporal extent of summer anoxia periods in Lake Mendota. Interannual variability in anoxia was largely driven by physical factors: earlier onset of thermal stratification in combination with a higher vertical stability strongly affected the duration and spatial extent of summer anoxia. A measured step change upward in summer anoxia in 2010 was unexplained by the GLM-AED2 model. Although the cause remains unknown, possible factors include invasion by the predacious zooplankton Bythotrephes longimanus. As the heat budget depended primarily on external meteorological conditions, the spatial and temporal extent of summer anoxia in Lake Mendota is likely to increase in the near future as a result of projected climate change in the region. 
    more » « less
  4. Abstract

    The concentration of dissolved oxygen (DO) is an important attribute of aquatic ecosystems, influencing habitat, drinking water quality, biodiversity, nutrient biogeochemistry, and greenhouse gas emissions. While average summer DO concentrations are declining in lakes across the temperate zone, much remains unknown about seasonal factors contributing to deepwater DO losses. It is unclear whether declines are related to increasing rates of seasonal DO depletion or changes in seasonal stratification that limit re‐oxygenation of deep waters. Furthermore, despite the presence of important biological and ecological DO thresholds, there has been no large‐scale assessment of changes in the amount of habitat crossing these thresholds, limiting the ability to understand the consequences of observed DO losses. We used a dataset from >400 widely distributed lakes to identify the drivers of DO losses and quantify the frequency and volume of lake water crossing biologically and ecologically important threshold concentrations ranging from 5 to 0.5 mg/L. Our results show that while there were no consistent changes over time in seasonal DO depletion rates, over three‐quarters of lakes exhibited an increase in the duration of stratification, providing more time for seasonal deepwater DO depletion to occur. As a result, most lakes have experienced summertime increases in the amount of water below all examined thresholds in deepwater DO concentration, with increases in the proportion of the water column below thresholds ranging between 0.9% and 1.7% per decade. In the 30‐day period preceding the end of stratification, increases were greater at >2.2% per decade and >70% of analyzed lakes experienced increases in the amount of oxygen‐depleted water. These results indicate ongoing climate‐induced increases in the duration of stratification have already contributed to reduction of habitat for many species, likely increased internal nutrient loading, and otherwise altered lake chemistry. Future warming is likely to exacerbate these trends.

    more » « less
  5. We present and evaluate an update to the process‐based lake model MyLake that includes a time‐varying linkage between light attenuation of both photosynthetically active radiation (PAR) and ultraviolet (UV) radiation wavelengths to changes in dissolved organic carbon (DOC). In many parts of northeastern North America and Europe, DOC in lakes has rapidly increased, leading to reduced water transparency and increases in light attenuation. These changes alter the vertical light and heat distribution that affect vertical structuring of temperature and dissolved oxygen. We use this model update to test the responsiveness of PAR and UV attenuation to short‐term fluctuations in DOC and with a test case of long‐term browning at Lake Giles (Pennsylvania). Lake Giles has browned significantly since the late 1980s, and three decades of detailed empirical data have indicated more than a doubling of DOC concentrations, and consequent increases in PAR and UV attenuation, warming surface waters, cooling deep waters, and increasing deepwater oxygen depletion. We found that the model performance improved by 16% and 52% for long‐term trends in PAR and UV attenuation, respectively, when these coefficients respond directly to in‐lake DOC concentrations. Further, long‐term trends in surface water warming, deepwater cooling, and deepwater oxygen depletion in Lake Giles were better captured by the model following this update, and were very rapid due to its high water transparency and low DOC. Hence, incorporating a responsive link between DOC and light attenuation in lake models is key to understanding long‐term lake browning patterns, mechanisms, and ecological consequences.

    more » « less