skip to main content


Title: Structural trends in the dehydrogenation selectivity of palladium alloys
Alloying is well-known to improve the dehydrogenation selectivity of pure metals, but there remains considerable debate about the structural and electronic features of alloy surfaces that give rise to this behavior. To provide molecular-level insights into these effects, a series of Pd intermetallic alloy catalysts with Zn, Ga, In, Fe and Mn promoter elements was synthesized, and the structures were determined using in situ X-ray absorption spectroscopy (XAS) and synchrotron X-ray diffraction (XRD). The alloys all showed propane dehydrogenation turnover rates 5–8 times higher than monometallic Pd and selectivity to propylene of over 90%. Moreover, among the synthesized alloys, Pd 3 M alloy structures were less olefin selective than PdM alloys which were, in turn, almost 100% selective to propylene. This selectivity improvement was interpreted by changes in the DFT-calculated binding energies and activation energies for C–C and C–H bond activation, which are ultimately influenced by perturbation of the most stable adsorption site and changes to the d-band density of states. Furthermore, transition state analysis showed that the C–C bond breaking reactions require 4-fold ensemble sites, which are suggested to be required for non-selective, alkane hydrogenolysis reactions. These sites, which are not present on alloys with PdM structures, could be formed in the Pd 3 M alloy through substitution of one M atom with Pd, and this effect is suggested to be partially responsible for their slightly lower selectivity.  more » « less
Award ID(s):
1647722
NSF-PAR ID:
10217719
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Chemical Science
Volume:
11
Issue:
19
ISSN:
2041-6520
Page Range / eLocation ID:
5066 to 5081
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Propane and propene oxidations on M1 phase MoVTeNb mixed oxide catalysts exhibit relatively high selectivity to acrolein and acrylic acid. We probe the ability of the reactant molecules to access the catalytic sites inside the heptagonal pores of these oxides and analyze elementary steps that limit selectivity. Measured propane/cyclohexane activation rate ratios on MoVTeNbO are nearly an order of magnitude higher than non‐microporous VOx/SiO2, which suggests significant contribution of M1 phase pores to propane activation because both molecules react via homologous rate‐limiting C−H activation. Density functional theory suggests that desired C3H8dehydrogenation and C3H6allylic oxidation to acrolein and acrylic acid are limited by C−H activation steps, while less valuable oxygenates form via steps limited by C−O bond formation. Calculated activation barriers for C−O formation are invariably higher than C−H activation when these activations occur inside the pores, suggesting that reactions restricted within the pores are highly selective to desired products. These results demonstrate the role of pore confinement and a framework to assess selectivity limitation in hydrocarbon oxidations involving a complex network of sequential and parallel steps.

     
    more » « less
  2. Indium on silica, alumina and zeolite chabazite (CHA), with a range of In/Al ratios and Si/Al ratios, have been investigated to understand the effect of the support on indium speciation and its corresponding influence on propane dehydrogenation (PDH). It is found that In 2 O 3 is formed on the external surface of the zeolite crystal after the addition of In(NO 3 ) 3 to H-CHA by incipient wetness impregnation and calcination. Upon reduction in H 2 gas (550 °C), indium displaces the proton in Brønsted acid sites (BASs), forming extra-framework In + species (In-CHA). A stoichiometric ratio of 1.5 of formed H 2 O to consumed H 2 during H 2 pulsed reduction experiments confirms the indium oxidation state of +1. The reduced indium is different from the indium species observed on samples of 10In/SiO 2 , 10In/Al 2 O 3 ( i.e. , 10 wt% indium) and bulk In 2 O 3 , in which In 2 O 3 was reduced to In(0), as determined from the X-ray diffraction patterns of the product, H 2 temperature-programmed reduction (H 2 -TPR) profiles, pulse reactor investigations and in situ transmission FTIR spectroscopy. The BASs in H-CHA facilitate the formation and stabilization of In + cations in extra-framework positions, and prevent the deep reduction of In 2 O 3 to In(0). In + cations in the CHA zeolite can be oxidized with O 2 to form indium oxide species and can be reduced again with H 2 quantitatively. At comparable conversion, In-CHA shows better stability and C 3 H 6 selectivity (∼85%) than In 2 O 3 , 10In/SiO 2 and 10In/Al 2 O 3 , consistent with a low C 3 H 8 dehydrogenation activation energy (94.3 kJ mol −1 ) and high C 3 H 8 cracking activation energy (206 kJ mol −1 ) in the In-CHA catalyst. A high Si/Al ratio in CHA seems beneficial for PDH by decreasing the fraction of CHA cages containing multiple In + cations. Other small-pore zeolite-stabilized metal cation sites could form highly stable and selective catalysts for this and facilitate other alkane dehydrogenation reactions. 
    more » « less
  3. This paper reports a robust strategy to catalyze in situ C–H oxidation by combining cobalt (Co) single-atom catalysts (SACs) and horseradish peroxidase (HRP). Co SACs were synthesized using the complex of Co phthalocyanine with 3-propanol pyridine at the two axial positions as the Co source to tune the coordination environment of Co by the stepwise removal of axial pyridine moieties under thermal annealing. These structural features of Co sites, as confirmed by infrared and X-ray absorption spectroscopy, were strongly correlated to their reactivity. All Co catalysts synthesized below 300 °C were inactive due to the full coordination of Co sites in octahedral geometry. Increasing the calcination temperature led to an improvement in catalytic activity for reducing O2, although molecular Co species with square planar coordination obtained below 600 °C were less selective to reduce O2 to H2O2 through the two-electron pathway. Co SACs obtained at 800 °C showed superior activity in producing H2O2 with a selectivity of 82–85% in a broad potential range. In situ production of H2O2 was further coupled with HRP to drive the selective C–H bond oxidation in 2-naphthol. Our strategy provides new insights into the design of highly effective, stable SACs for selective C–H bond activation when coupled with natural enzymes. 
    more » « less
  4. null (Ed.)
    The use of alternative oxidants for the oxidative dehydrogenation of propane (ODHP) is a promising strategy to suppress the facile overoxidation to CO x that occurs with O 2 . Gaseous disulfur (S 2 ) represents a thermodynamically “softer” oxidant that has been underexplored and yet offers a potential route to more selective propylene formation. Here we describe a system for sulfur-ODHP (SODHP). We demonstrate that various metal sulfide catalysts generate unique reaction product distributions, and that propylene selectivities as high as 86% can be achieved at 450–550 °C. For a group of 6 metal sulfide catalysts, apparent activation energies for propylene formation range from 72–134 kJ mol −1 and parallel the corresponding catalyst XPS sulfur binding energies, indicating that M–S bond strength plays a key role in SODHP activity. Kinetic data over a sulfided ZrO 2 catalyst indicate a rate law which is first-order in propane and zero-order in sulfur, suggesting that SODHP may occur via a mechanism analogous to the Mars van Krevelen cycle of traditional ODHP. The present results should motivate further studies of SODHP as a route to the selective and efficient oxidative production of propylene. 
    more » « less
  5. null (Ed.)
    In this study, we show how strong metal–support interaction (SMSI) oxides in Pt–Nb/SiO 2 and Pt–Ti/SiO 2 affect the electronic, geometric and catalytic properties for propane dehydrogenation. Transmission electron microscopy (TEM), CO chemisorption, and decrease in the catalytic rates per gram Pt confirm that the Pt nanoparticles were partially covered by the SMSI oxides. X-ray absorption near edge structure (XANES), in situ X-ray photoelectron spectroscopy (XPS), and resonant inelastic X-ray scattering (RIXS) showed little change in the energy of Pt valence orbitals upon interaction with SMSI oxides. The catalytic activity per mol of Pt for ethylene hydrogenation and propane dehydrogenation was lower due to fewer exposed Pt sites, while turnover rates were similar. The SMSI oxides, however, significantly increase the propylene selectivity for the latter reaction compared to Pt/SiO 2 . In the SMSI catalysts, the higher olefin selectivity is suggested to be due to the smaller exposed Pt ensemble sites, which result in suppression of the alkane hydrogenolysis reaction; while the exposed atoms remain active for dehydrogenation. 
    more » « less