Abstract Matching the rich multimodality of natural organisms, i.e., the ability to transition between crawling and swimming, walking and jumping, etc., represents a grand challenge in the fields of soft and bio‐inspired robotics. Here, a multimodal soft robot locomotion using highly compact and dynamic bistable soft actuators is achieved. These actuators are composed of a prestretched membrane sandwiched between two 3D printed frames with embedded shape memory alloy (SMA) coils. The actuator can swiftly transform between two oppositely curved states and generate a force of 0.3 N through a snap‐through instability that is triggered after 0.2 s of electrical activation with an input power of 21.1 ± 0.32W(i.e., electrical energy input of 4.22 ± 0.06J. The consistency and robustness of the snap‐through actuator response is experimentally validated through cyclical testing (580 cycles). The compact and fast‐responding properties of the soft bistable actuator allow it to be used as an artificial muscle for shape‐reconfigurable soft robots capable of multiple modes of SMA‐powered locomotion. This is demonstrated by creating three soft robots, including a reconfigurable amphibious robot that can walk on land and swim in water, a jumping robot (multimodal crawler) that can crawl and jump, and a caterpillar‐inspired rolling robot that can crawl and roll.
more »
« less
Micrometer-sized electrically programmable shape-memory actuators for low-power microrobotics
Shape-memory actuators allow machines ranging from robots to medical implants to hold their form without continuous power, a feature especially advantageous for situations where these devices are untethered and power is limited. Although previous work has demonstrated shape-memory actuators using polymers, alloys, and ceramics, the need for micrometer-scale electro–shape-memory actuators remains largely unmet, especially ones that can be driven by standard electronics (~1 volt). Here, we report on a new class of fast, high-curvature, low-voltage, reconfigurable, micrometer-scale shape-memory actuators. They function by the electrochemical oxidation/reduction of a platinum surface, creating a strain in the oxidized layer that causes bending. They bend to the smallest radius of curvature of any electrically controlled microactuator (~500 nanometers), are fast (<100-millisecond operation), and operate inside the electrochemical window of water, avoiding bubble generation associated with oxygen evolution. We demonstrate that these shape-memory actuators can be used to create basic electrically reconfigurable microscale robot elements including actuating surfaces, origami-based three-dimensional shapes, morphing metamaterials, and mechanical memory elements. Our shape-memory actuators have the potential to enable the realization of adaptive microscale structures, bio-implantable devices, and microscopic robots.
more »
« less
- Award ID(s):
- 1935252
- PAR ID:
- 10217797
- Publisher / Repository:
- American Association for the Advancement of Science (AAAS)
- Date Published:
- Journal Name:
- Science Robotics
- Volume:
- 6
- Issue:
- 52
- ISSN:
- 2470-9476
- Page Range / eLocation ID:
- Article No. eabe6663
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Bending and folding techniques such as origami and kirigami enable the scale‐invariant design of 3D structures, metamaterials, and robots from 2D starting materials. These design principles are especially valuable for small systems because most micro‐ and nanofabrication involves lithographic patterning of planar materials. Ultrathin films of inorganic materials serve as an ideal substrate for the fabrication of flexible microsystems because they possess high intrinsic strength, are not susceptible to plasticity, and are easily integrated into microfabrication processes. Here, atomic layer deposition (ALD) is employed to synthesize films down to 2 nm thickness to create membranes, metamaterials, and machines with micrometer‐scale dimensions. Two materials are studied as model systems: ultrathin SiO2and Pt. In this thickness limit, ALD films of these materials behave elastically and can be fabricated with fJ‐scale bending stiffnesses. Further, ALD membranes are utilized to design micrometer‐scale mechanical metamaterials and magnetically actuated 3D devices. These results establish thin ALD films as a scalable basis for micrometer‐scale actuators and robotics.more » « less
-
Abstract Microwave photonics uses light to carry and process microwave signals over a photonic link. However, light can instead be used as a stimulus to microwave devices that directly control microwave signals. Such optically controlled amplitude and phase-shift switches are investigated for use in reconfigurable microwave systems, but they suffer from large footprint, high optical power level required for switching, lack of scalability and complex integration requirements, restricting their implementation in practical microwave systems. Here, we report Monolithic Optically Reconfigurable Integrated Microwave Switches (MORIMSs) built on a CMOS compatible silicon photonic chip that addresses all of the stringent requirements. Our scalable micrometer-scale switches provide higher switching efficiency and require optical power orders of magnitude lower than the state-of-the-art. Also, it opens a new research direction on silicon photonic platforms integrating microwave circuitry. This work has important implications in reconfigurable microwave and millimeter wave devices for future communication networks.more » « less
-
Abstract Electrochemical devices that transform electrical energy to mechanical energy through an electrochemical process have numerous applications ranging from robotics and micropumps to microlenses and bioelectronics. To date, achievement of large deformation strains and fast responses remains challenging for electrochemical actuators wherein drag forces restrict the device motion and electrode materials/structures limit the ion transportation. Results for electrochemical actuators, electrochemical mass transfers, and electrochemical dynamics made from organic semiconductors (OSNTs) are reported. The OSNTs device exhibits high‐performance with fast ion transport and accumulation in liquid and gel‐polymer electrolytes. This device demonstrates an impressive performance, including low power consumption/strain, a large deformation, fast response, and excellent actuation stability. This outstanding performance stems from the enormous effective surface area of nanotubes that facilitates ion transport and accumulation resulting in high electroactivity and durability. Experimental studies of motion and mass transport are utilized along with the theoretical analysis for a variable–mass system to establish the dynamics of the device and to introduce a modified form of Euler‐Bernoulli's equation for the OSNTs. Ultimately, a state‐of‐the‐art miniaturized device composed of multiple microactuators for potential biomedical applications is demonstrated. This work provides new opportunities for next‐generation actuators that can be utilized in artificial muscles and biomedical devices.more » « less
-
New materials are advancing the field of soft robotics. Composite films of magnetic iron microparticles dispersed in a shape memory polymer matrix are demonstrated for reconfigurable, remotely actuated soft robots. The composite films simultaneously respond to magnetic fields and light. Temporary shapes obtained through combined magnetic actuation and photothermal heating can be locked by switching off the light and magnetic field. Subsequent illumination in the absence of the magnetic field drives recovery of the permanent shape. In cantilevers and flowers, multiple cycles of locking and unlocking are demonstrated. Scrolls show that the permanent shape of the film can be programmed, and they can be frozen in intermediate configurations. Bistable snappers can be magnetically and optically actuated, as well as biased, by controlling the permanent shape. Grabbers can pick up and release objects repeatedly. Simulations of combined photothermal heating and magnetic actuation are useful for guiding the design of new devices.more » « less
An official website of the United States government
